
Joint International Conference on Supercomputing in Nuclear Applications and Monte Carlo 2013 (SNA + MC 2013)
La Cité des Sciences et de l’Industrie, Paris, France, October 27–31, 2013

Vectorization of a 2D–1D Iterative Algorithm for the 3D Neutron Transport Problem
in Prismatic Geometries

Salli Moustafa1, François Févotte1, Bruno Lathuilière1, and Laurent Plagne1

1EDF R&D, SINETICS department, 1 av. du Général de Gaulle, 92140 Clamart, France

The past few years have been marked by a noticeable increase in the interest in 3D whole-core heterogeneous deter-
ministic neutron transport solvers for reference calculations. Due to the extremely large problem sizes tackled by such
solvers, they need to use adapted numerical methods and need to be efficiently implemented to take advantage of the
full computing power of modern systems.
As for numerical methods, one possible approach consists in iterating over resolutions of 2D and 1D MOC problems by
taking advantage of prismatic geometries. The MICADO solver, developed at EDF R&D, is a parallel implementation
of such a method in distributed and shared memory systems. However it is currently unable to use SIMD vectorization
to leverage the full computing power of modern CPUs.
In this paper, we describe our first effort to support vectorization in MICADO, typically targeting Intel c© SSE CPUs.
Both the 2D and 1D algorithms are vectorized, allowing for high expected speedups for the whole spatial solver. We
present benchmark computations, which show nearly optimal speedups for our vectorized implementation on the
TAKEDA case.

KEYWORDS: Method of Characteristics (MOC), MICADO, prismatic geometry, SIMD, Intel SSE

I. Introduction

The past few years have been marked by a noticeable increase in
the interest in 3D whole-core heterogeneous deterministic neu-
tron transport solvers for reference calculations.(1) This trend
has been sustained by the ongoing increase in available comput-
ing power, both for personal desktop systems and high perfor-
mance computing clusters. Due to the extremely large problem
sizes1 tackled by such solvers, they need to use adequate nu-
merical methods and need to be efficiently implemented to take
advantage of the full computing power of modern systems.

As far as the numerical methods as concerned, one possi-
ble approach – suitable for prismatic reactors – is based on a
2D Method of Characteristics (MOC) to handle unstructured
meshes in the radial dimensions. Following CRX,(2) different
variants of this approach have been implemented in a wide
spectrum of solvers such as CHAPLET-3D(3) or DeCART.(4)

In a previous paper, we describe in details the 2D–1D cou-
pling methodology implemented at EDF R&D in the MICADO
solver,(5) which is part of the larger COCAGNE platform.

As far as high performance computing is concerned, modern
systems routinely present three levels of parallelism: distributed
memory parallelism, where independent processing units com-
municate using a network; shared memory parallelism, where
different cores share a fast access to the same Random Access
Memory (RAM); and vectorization, where SIMD2 instructions
allow a single processing unit to simultaneously apply the same
operation on multiple values. While MICADO takes advantage

1the number of degrees of freedom in discretized 3D heterogeneous multi-
group S N problems can often be of the order of 1012.

2SIMD: Single Instruction, Multiple Data.

of the properties of the 2D–1D method to implement distributed
and shared memory parallelism,(5) it is currently unable to use
SIMD vectorization to leverage the full computing power of
modern CPUs. This state of affairs is all the more sorry that
such instruction sets have been widely supported by most micro-
processors for a long time (SSE3 has been introduced by Intel
in 1999), and is likely to play a more and more important role
in the future,(6) with the arrival of new SIMD instruction sets
featuring more parallel channels: AVX4 or AVX-512, which
will allow applying the same operation to as many as 16 single
precision floating points numbers simultaneously. As stated by
NVidia: “all contemporary processors (CPUs and GPUs) are
built by aggregating vector processing units”.(7)

In this paper, we describe our first effort to support vector-
ization in MICADO. The targeted architecture is Intel SSE,
but we will focus on algorithms and techniques which scale
to larger SIMD technologies. In part II, we present the dis-
tributed and shared-memory parallel implementation of the
2D–1D method in MICADO. We then move on in part III to the
techniques used to vectorize it, before assessing the efficiency
of the vectorization in part IV.

3Intel c© SSE: Streaming SIMD Extension, allows to apply the same opera-
tion to 4 single precision floating point numbers simultaneously.

4AVX: Advanced Vector eXtensions, first supported by Intel with the Sandy
Bridge processor in 2011, which allows to apply the same operation to 8 single
precision floating point numbers simultaneously.



Joint International Conference on Supercomputing in Nuclear Applications and Monte Carlo 2013 (SNA + MC 2013)
La Cité des Sciences et de l’Industrie, Paris, France, October 27–31, 2013

II. Presentation of the MICADO Solver

1. Method

1.1. 2D–1D equations

After discretization of the energetic and angular variables in the
neutron transport problem, the monokinetic spatial equation
left to solve can be written as:

∀ Ω ∈ S N ,

ε
∂ψ

∂x
(x, y, z) + η

∂ψ

∂y
(x, y, z) + µ

∂ψ

∂z
(x, y, z) + Σψ(x, y, z)

= Q(x, y, z), (1)

where S N represents the chosen angular quadrature formula (i.e.
a set of directions discretizing the unit sphere S 2), and ε, η, µ
are the three components of direction Ω respectively along
axes x, y and z. The angular flux at a given point is denoted by
ψ(x, y, z), Σ is the total macroscopic cross-section, and Q(x, y, z)
represents the source term including fission and scattering.

Figure 1: Alternating resolution on 2D slices and 1D columns

In prismatic geometries, space can be discretized as the Carte-
sian product of a radial mesh and an axial one. Let us denote
by Ri, i ∈ ~1,Ni� the regions of the potentially unstructured
radial mesh, and z j, j ∈ ~1,N j + 1� the boundaries of the axial
mesh. As detailed in a previous paper,(5) equation (1) can be
numerically approximated by an iterative system coupling the
solutions of a set of 2D equations on “slices” of the geometry,
with 1D problems on columns (Figure 1), using leakage terms.

Algorithm 1: 2D–1D coupling
B Convergence loop
while ψR , ψZ do
B Solve 2D MOC equations
forall j ∈ ~1,N j� :

forall Ωk ∈ S N :
B Solve equation (2)

end
end

B Solve 1D MOC equations
forall i ∈ ~1,Ni� :

forall Ωk ∈ S N :
B Solve equation (3)

end
end

end

This leads to algorithm 1, where for any angular direction Ωk,

the set of 2D equations for every slice [z j, z j+1]∫ z j+1

z j

(
εk
∂ψk,R

∂x
+ ηk

∂ψk,R

∂y
+ Σψk,R

)
dz

=

∫ z j+1

z j

(
Q − µk

∂ψk,Z

∂z

)
dz (2)

is coupled to the set of 1D equations for every column extruded
above region Ri∫

Ri

(
µ
∂ψk,Z

∂z
+ Σψk,Z

)
dx dy

=

∫
Ri

(
Q − εk

∂ψk,R

∂x
− ηk

∂ψk,R

∂y

)
dx dy (3)

1.2. Discretization using the MOC

In practice, equations (2)–(3) are discretized using the Method
of Characteristics(8) (MOC). We will not enter the details of
the method here, but just describe general principles. For the
sake of simplicity, let us rewrite equation (2) in a more classical
form, without leakage source terms coming from the 2D–1D
iterations:

Ω · ∇x,yψ(Ω, x, y) + Σ(x, y) ψ(Ω, x, y) = Q(x, y). (4)

In the following, we will describe the resolution process of
the 2D equation in a given axial slice [z j, z j+1]. The method of
characteristics uses the discretization of the 2D radial domain
in regions Ri, i ∈ ~1,Ni�. This mesh is potentially unstructured,
the regions being of arbitrary shapes; the only requirement is
that they should cover the entire domain without overlapping.
Although higher order schemes exist,(9) we suppose in our
implementation that the source term Q and total cross-section Σ

are constant region-wise.

Figure 2: Tracking of a 2D unstructured geometry

The method of characteristics relies on a tracking to capture
details of the geometry: for each direction in the quadrature
formula, a set of parallel lines is defined, covering the whole
geometry (fig. 2). Each of these lines is tracked, starting from
the domain boundary, and the sequence of crossed regions is
stored along with associated intersection lengths.

For each characteristic line crossing a region in the geometry,
integrating equation (4) along the segment yields transmission
and balance equations of the following form:



Joint International Conference on Supercomputing in Nuclear Applications and Monte Carlo 2013 (SNA + MC 2013)
La Cité des Sciences et de l’Industrie, Paris, France, October 27–31, 2013

Figure 3: Flux transmission in direction Ωk = (εk, ηk, µk):
(left) – 2D characteristic crossing radial region Ri in slice [z j, z j+1]
(right) – 1D transmission through slice [z j, z j+1] in column Ri (µk > 0)

ψ+ = T (ψ−, lC,i,Q,Σ), (5)

ψ̄C,i =

∫
C∩Ri

ψ(Ωk, x, y) dr

= B(ψ−, ψ+, lC,i,Q,Σ), (6)

with the notations of figure 3: ψ− and ψ+ denote the flux respec-
tively entering and exiting region Ri through characteristic line
C. lC,i represents the intersection length between C and Ri, and
ψ̄C,i is the average angular flux in region Ri along C. The real
expressions used for transmission T and balance B operators
will be discussed in the next section.

Figure 4: Integration of the average flux in a region

A transverse integration formula is then used to compute
region-averaged angular flux ψ̄k, j,i:

ψ̄k, j,i =

∫
Ri×[z j;z j+1]

ψ(Ωk, x, y) dx dy dz,

=
∑

n

wCn ψ̄Cn,i, (7)

where notations are explained in figure 4: wCn is a transverse
weight associated to characteristic line Cn in the tracking.

1.3. Integration schemes

Two different integration schemes are implemented in MI-
CADO, leading to different expressions for transmission (T )
and balance (B) functions:

Step Characteristics (SC) : this scheme is the most usually
implemented in the method of characteristics, and can
be obtained by integrating the transport equation along a
characteristic line crossing a region:

T (ψ−, l,Q,Σ) = ψ−i e−Σ l +
1 − e−Σ l

Σ
Q,

B(ψ−, ψ+, l,Q,Σ) =
ψ− − ψ+

Σ
+

Q l
Σ
.

Diamond Differencing (DD) : this scheme can be derived(10)

by supposing the averaged flux to be the half sum of en-
tering and exiting fluxes; the obtained ansatz for exiting
flux ψ+ is injected into the transport equation to yield the
transmission equation:

T (ψ−, l,Q,Σ) =
2 − Σ l
2 + Σ l

ψ− +
2 l

2 + Σ l
Q,

B(ψ−, ψ+, l,Q,Σ) =
l
2

(
ψ− + ψ+) ,

It is interesting to note at this stage that the Step Charac-
teristics scheme presents a higher arithmetic intensity than
the Diamond Differencing: although both schemes require the
same information being fetched from memory5 (l, Σ, Q), the
DD scheme requires only a few operations to process them,
whereas the SC scheme requires computing an expensive expo-
nential (even though tabulating the exponential function some-
what reduces its computational cost,(11) the SC scheme still
remains more arithmetically intensive than the DD scheme).

1.4. Sweeping algorithms

The equations detailed above lead to the resolution of the set of
2D equations (2) using a sweep described in algorithm 2.

For the sake of simplicity, we will suppose here the bound-
ary conditions to be null incoming flux (thus modelling void).
Supporting other boundary condition types leads to more com-
plicated algorithms,(12) but does not affect the matters discussed
in this paper. For the sake of readability, the last two arguments
Q and Σ to transmission and balance operators T and B have
been omitted in the algorithm; they are respectively taken to be
the source term and total cross section in the current region.

In this algorithm, as well as those presented in the rest of
the paper, the forall keyword is used for a loop whose order
is unimportant (and all iterations can potentially be realized in
parallel, except for some write operations on shared variables,
which should be considered as reductions). On the other hand,
the foreach keyword has been used for loops in which the
order of iterations is important. These loops are much less
easily parallelized.

The incoming flux in the first region crossed by a character-
istic line is initialized using the boundary conditions. The trans-
mission equation (5) is then repeatedly applied to successive
regions crossed by the characteristic line, allowing computation
of an exiting flux, which will be taken as the incoming flux
in next region. For each region, the segment averaged flux
is computed using the balance equation (6), and accumulated

5temporary variables like ψ− and ψ+ stay in registers.



Joint International Conference on Supercomputing in Nuclear Applications and Monte Carlo 2013 (SNA + MC 2013)
La Cité des Sciences et de l’Industrie, Paris, France, October 27–31, 2013

Algorithm 2: 2D resolution

1 B Loop over axial slices
2 forall slices j ∈ ~1; N j� :

3 B Loop over directions
4 forall directions Ωk ∈ S N :

5 B 2D sweep in direction Ωk

6 forall characteristic lines C ∈ Tk :

7 ψ− = 0 ; B Initialize incoming flux
8 foreach region ri crossed by C :

9 B Apply transmission and balance eqs:
10 ψ+ = T (ψ−, lC,i

µk
, ...);

11 ψ̄k, j,i = ψ̄k, j,i + wC B(ψ±, lC,i
µk
, ...);

12 B Forward outgoing flux to next region:
13 ψ− = ψ+ ;
14 end
15 end
16 end
17 end

into the region-averaged flux using the transverse integration
formula (7). Repeating this sweep for all characteristic lines,
all angular directions and all slices yields the solution of the set
of 2D equations in the whole domain.

Algorithm 3: 1D resolution

1 B Loop over directions
2 forall directions Ωk ∈ S N :

3 B Loop over radial regions
4 forall regions i ∈ ~1; Ni� :

5 ψ− = 0 ; B Initialize incoming flux

6 B Loop over axial slices, in ascending or
7 descending order depending on the sign of µk

8 foreach slice j ∈ ~1; N j� :

9 B Apply transmission and balance equations:
10 ψ+ = T (ψ−, z j+1−z j√

1−µ2
k

, ...);

11 ψ̄k, j,i = ψ̄k, j,i + B(ψ±, z j+1−z j√
1−µ2

k

, ...);

12 B Forward outgoing flux to next region:
13 ψ− = ψ+ ;
14 end
15 end
16 end

The set of 1D equations (3) is solved using a similar process,
except that there is no such thing as a tracking in a 1D geom-
etry: the only characteristic line is the z axis, which crosses
all regions in ascending or descending order depending on the
sign of µ (figure 3). Associated intersection lines are simply
the slices thickness. This makes the 1D sweep described in
algorithm 3 much simpler.

2. Parallel Implementation

As explained in a previous paper,(5) MICADO implements
parallel versions of algorithms 2 and 3, using the following
strategy:

• Distributed memory parallelization using MPI: axial slices
are distributed among processors, which leads to:

– parallelizing the loop on slices at line 2 in algo-
rithm 2 ;

– pipelining the loop on columns at line 4 in algo-
rithm 3.

• Shared memory parallelization using Intel c© Threading
Building Blocks (TBB):

– the 2D solver (algorithm 2) uses parallel loops for
slices (line 2) and angular directions (line 4);

– the 1D solver (algorithm 3) uses parallel loops for
the radial regions (line 4).

Therefore, although the loop on slices would be very suitable
to vectorization in the 2D algorithm, we decided against vec-
torizing it, choosing instead to preserve the ability to distribute
one slice per parallel node.

III. Vectorization of MICADO

1. Intel SSE

Targeted architectures for the vectorization of MICADO are not
GPUs, but rather standard CPUs used in EDF R&D cluster Iva-
noe(13) featuring the Intel c© SSE (Streaming SIMD Extensions)
vectorized instruction set. Using this technology, a single op-
eration can be applied simultaneously to 4 single precision (or
2 double precision) floating point numbers stored in appropriate
registers.

Although SSE is our current target architecture, it is impor-
tant to keep in mind that new SIMD instruction sets are coming,
such as AVX(14) or AVX-512 which will allow processing as
many as 8 or 16 single precision floating point numbers at
once. It is therefore of capital importance that the vectoriza-
tion techniques employed be scalable to more than 4 channels.
On the other hand, our vectorized algorithm does not need to
scale to thousands of simultaneous SIMD operations. Solvers
which aim at supporting such massively vectorized operations,
for example targeting GPU-based systems, often transform the
energetic multigroup Gauss-Seidel iterations into a Jacobi itera-
tive solver; such non-optimal changes in algorithm should be
avoided in our case.

A very important thing to keep in mind about vectorization
is that all data meant to be processed vectorially should be
stored contiguously in memory. Failing to comply with this
requirement results in extremely low performances.



Joint International Conference on Supercomputing in Nuclear Applications and Monte Carlo 2013 (SNA + MC 2013)
La Cité des Sciences et de l’Industrie, Paris, France, October 27–31, 2013

2. Quadrature formulas

As one can see in algorithm 2, apart from the source term Q and
cross-section Σ fields, the transmission and balance equations
only use geometric information such as list of regions ri crossed
by characteristics, and associated intersection length lC,i. As
one can see on figure 5, these only depend on the azimuthal
direction given by (ε, η). These information are stored in the
tracking, which is computed at the beginning of the computa-
tion. On the other hand, the polar direction (given by µ) only
appears as a scaling on intersection lengths.

Figure 5: Sharing of azimuthal tracking in product quadrature
formulas

This leads to an interesting optimization if the angular
quadrature formula is constructed as the Cartesian product
of an azimuthal quadrature and a polar one :{ (

εka , ηka

)
, ka ∈ ~1,Na�

}
×

{
µkp , kp ∈ ~1,Np�

}
.

Indeed, in such cases, tracking information can be computed
only for azimuthal directions, and shared between all polar
directions.

This leads to modified algorithm 4, where the loop over
angular directions is split into two: an outer azimuthal loop, and
an inner polar loop. A major difference in this algorithm is that
the temporary variables ψ± – storing incoming and outgoing
fluxes along a characteristic line – are now vectors indexed by
the polar direction.

Although using only product quadrature formulas can be
a constraint (especially for comparisons with solvers using
general quadratures such as Level Symmetric), it is believed
to be an acceptable restriction in the author’s opinion. Indeed,
most solvers based on the Method of Characteristics, whether

Algorithm 4: 2D resolution – product quadrature formula

1 B Loop over axial slices
2 forall slices j ∈ ~1; N j� :

3 B Loop over azimuthal directions
4 forall directions

(
εka , ηka

)
, ka ∈ ~1,Na� :

5 B 2D sweep
6 forall characteristic lines C ∈ Tka :
7 foreach regions ri crossed by C :

8 B Loop over polar directions
9 forall polar angles µkp , kp ∈ ~1,Np� :

10 B Apply transmission and balance eqs:
11 ψ+

kp
= T (ψ−kp

,
lC,i
µkp
, ...);

12 ψ̄k, j,i = ψ̄k, j,i + wC B(ψ±kp
,

lC,i
µkp
, ...);

13 B Update incoming flux in next region:
14 ψ− = ψ+ ;
15 end
16 end
17 end
18 end
19 end

in 2D or 3D, favor such quadrature formulas(12, 15) to reduce the
tracking storage requirements.

3. Vectorization of the 2D solver

An interesting property of algorithm 4 is that the inner polar
loop (line 9) can be vectorized, since the exact same operations
are applied in the same order to a set of Np values.

Such a vectorization does however require rather drastic
changes in the storage policy used for spatial fields. The natural
storage policy for algorithm 2 consists in storing and accessing
fields as multidimensional arrays indexed in the following or-
der:
psi[j][k][i],

where the notations are consistent with the rest of the paper:
i indexes radial regions, j indexes axial slices, and k indexes
angular directions. Vectorizing algorithm 4 however requires
that values relative to consecutive polar angles be stored con-
tiguously in memory, thus imposing the following type of ad-
dressing:
psi[j][ka][i][kp],

where index k on directions has been split into ka and kp,
respectively indexing azimuthal and polar directions.

4. Vectorization of the 1D solver

Such a storage policy being chosen, one would favor vectoriz-
ing the 1D solver along polar angles, which is the only way to
avoid shuffling data in memory. This is however not feasible:
as shown in figure 6, 1D sweeps must be done according to the
sign of µ. For a product quadrature formula with 4 polar angles,
two of these angles lead to data flowing upwards, while the
two others lead to data flowing downwards during the sweep.



Joint International Conference on Supercomputing in Nuclear Applications and Monte Carlo 2013 (SNA + MC 2013)
La Cité des Sciences et de l’Industrie, Paris, France, October 27–31, 2013

Unless the quadrature formula counts enough polar angles, it is
therefore not scalable to sweep them vectorially.

Figure 6: Flow of data in a 1D sweep, for directions going up-
ward (µ > 0, in red) or downward (µ < 0, in blue)

Studying algorithm 3, another candidate for vectorization
is the loop over radial regions (line 4). Indeed, for any given
direction in the product quadrature formula, the sweep of any
1D column leads to the same slices to be visited in the same or-
der. This technique should moreover be scalable since, even in
distributed memory environments where this loop is pipelined,
the pipeline block size can be chosen large enough for the
vectorization to take place.

Vectorizing this loop does however entail a data relocation,
since data referring to neighbouring regions should now be
stored consecutively in memory. This causes stored fields to be
stored and accessed in the following fashion:

psi[j][ka][kp][i],
with the indexes described above. This data relocation is only
done blockwise in the pipeline; the entire vector does not need
to be duplicated in memory.

IV. Numerical Results

1. Benchmark

The results presented hereafter were obtained on the TAKEDA
benchmark,(16) using the following parameters:

• uniform 50 × 50 × 50 Cartesian spatial discretization;

• Gauss-Legendre 8×4 product angular quadrature formula;

• single precision floating point numbers;

• all parallelization options turned off.

For 2D results, only the central plane of the TAKEDA geom-
etry is considered, discretized in a 500 × 500 Cartesian spatial
mesh.

Different versions of the MICADO solver are compared,
which we will refer to using the following names in slanted
font to avoid ambiguity in the results:

general: algorithm 2, using a general quadrature formula, with-
out vectorization; this version will be used as a reference.

product: algorithm 4, adapted to product quadrature formulas,
without vectorization. When used for 3D calculations, the
1D axial solver also uses a modified algorithm where the
loop over directions has been split into nested azimuthal
and polar loops.

sse: same algorithms as the product version, with a vector-
ized implementation using Intel c© SSE to implement the
strategies described in sections III.3 and III.4.

It is important at this point to stress that all versions of
the solver produce the exact same results. These results were
proven to be accurate with respect to the benchmarked MCNP
reference in previous work.(5)

In all tables presented below, computing times will be pre-
sented in seconds elapsed. Measurements were performed on
an Intel c© Xeon c© E5620 CPU (Westmere c© microarchitecture).
This CPU features 128-bit SIMD registers allowing to apply
simultaneously the same operation on 4 single precision float-
ing point numbers. With our settings, the maximum obtainable
speedup between the product and sse versions is thus 4.

Different parts of the computation were timed. Timings for
solver iterations were obtained by averaging a few iterations
for better accuracy.

tracking: computation and storage of all characteristic lines.
This is a preprocessing step, needed only once at the be-
ginning of the computation and re-used for all iterations.
Tracking computing times are therefore not really relevant
for realistic computations where several inner iterations
will be performed; they are shown here only for reference
purposes.

2D solver: solution of the set of 2D fixed-source neutron trans-
port problems for all axial slices, and computation of axial
leakage source terms. This is the most expensive part
in the computation, and the one we aim at reducing in
priority.

1D solver: solution of the set of 1D fixed-source neutron trans-
port problems for all columns, and computation of radial
leakage source terms. Although this part is less com-
putationally intensive than the 2D solver, it can become
limiting in distributed memory environments. In the vec-
torized version (sse), 1D Solver computing times include
in-memory data relocations needed to adapt data storage
to SSE constraints.

2D–1D solver: one iteration of the mono-kinetic, fixed-source
spatial solver (algorithm 1). The time spent in this part is
essentially (98–99%) composed of the sum of the 2D and
1D solvers.

2. Results for the 2D case

Results for the 2D case are presented in tables 1 and 2, respec-
tively for the Step Characteristics Scheme and the Diamond
Differencing scheme.

As expected, using an algorithm adapted to product quadra-
ture formulas greatly reduces the tracking time, though not as



Joint International Conference on Supercomputing in Nuclear Applications and Monte Carlo 2013 (SNA + MC 2013)
La Cité des Sciences et de l’Industrie, Paris, France, October 27–31, 2013

Tracking (speedup) 2D Solver (speedup)

general 5.18 5.50
product 1.96 (×2.64) 6.29 (×0.88)
sse 1.57 (×3.30) 1.48 (×3.73)

product/fixed 1.96 5.82 (×0.94)
product/fast-exp 1.96 4.75 (×1.15)

Table 1: Computation times (s.) for different code versions, using
the Step Characteristics scheme in 2D.

much as one might have anticipated: although the workload has
decreased by a factor 4 (the number of polar angles), speedups
are not higher than 2.64. This might be due to fixed overheads
such as memory allocations and file inputs to read the data
set. Slightly better speedups (3.3) can be obtained by vector-
izing the computation of numerical volumes at the end of the
tracking.

As for the 2D solver computing time, we can observe inter-
esting results. When using the Step Characteristics scheme,
using a product quadrature formula slightly decreases perfor-
mances by approximately 12%. This is partly incurred by the
added inner loop on polar angles, as we can see by introducing
a new version of the code, named product/fixed. This implemen-
tation is identical to the product version, but the loop on polar
angles has been fixed and unrolled at compile time. Part of the
performance is regained; the remaining performance drop can
probably be explained by the change in data storage policy.

Vectorizing the inner loop however proves to be effective
since we obtain speedups of 3.73, close to the maximal value
4. Speedup between the product and sse version is even larger
than 4, which might be due to the use of a fast vectorized ex-
ponential implementation coming from the Eigen(17) library in
the sse version, whereas the standard glibc version was used
in the product implementation. This effect can be measured
by introducing another test version, called product/fast-exp. In
this version, the implementation is identical to product, except
that exponentials in the Step Characteristics scheme are com-
puted using the Eigen library. The speedup between sse and
product/fast-exp is 3.21, which is back under the maximal SSE
speedup value of 4.

Tracking (speedup) 2D Solver (speedup)

general 5.02 2.19
product 1.84 (×2.73) 1.93 (×1.14)
sse 1.61 (×3.12) 1.44 (×1.52)

Table 2: Computation times (s.) for different code versions, using
the Diamond Differencing scheme in 2D.

Due to the low arithmetic intensity of the Diamond Differenc-
ing scheme, it benefits from better data locality in the product
implementation, compensating for the cost of the extra inner
polar loop and even allowing for a 1.14 speedup. However,
the lower arithmetic intensity also makes vectorization less
effective than in the SC scheme, leading to only 1.5 speedup.

3. Results for the 3D case

Computing times for 3D calculations are reported in tables 3
and 4 respectively for the Step Characteristics and Diamond
Differences schemes.

2D (speedup) 1D (speedup) 2D–1D (speedup)

general 2.69 0.21 2.93
product 3.04 (×0.89) 0.23 (×0.91) 3.30 (×0.89)
sse 0.52 (×5.21) 0.10 (×2.18) 0.65 (×4.51)

Table 3: Computation times (s.) for different code versions, using
the Step Characteristics scheme in 3D.

We can first observe that in the general implementation, the
2D solver uses more than 90% of the computing time of a
spatial solution, which explains our vectorization choices in
favor of the good efficiency of 2D algorithms.

Vectorization efficiency of the 2D solver in a 3D environment
is not different than what was observed for 2D cases: the added
inner loop on polar angles incurs a slight loss of performances
(around 10%), which is largely compensated for by the obtained
vectorization gain (5.21 speedup, once again larger than the
maximal theoretical value thanks to Eigen’s fast exponential
implementation).

As for the 1D part, we observe the same loss of perfor-
mance (10% between the general and product version) due to
the added loop on polar angles. As expected vectorizing the
1D solver does not yield as much speedup as the 2D solver due
to the cost of data relocation in the sse version: the measured
speedup is 2.18 with respect to the general version (or 2.4 with
respect to the product implementation). This still allows for
substantial global speedups for the spatial solver: 4.5 between
the general and sse versions.

2D (speedup) 1D (speedup) 2D–1D (speedup)

general 0.83 0.04 0.88
product 0.67 (×1.24) 0.09 (×0.51) 0.77 (×1.14)
sse 0.41 (×2.03) 0.07 (×0.58) 0.49 (×1.79)

Table 4: Computation times (s.) for different code versions, using
the Diamond Differencing scheme in 3D.

Results for the Diamond Differencing scheme follow the
same trend as in the 2D case: the lower arithmetic intensity
limits the vectorization efficiency. We still obtain speedups
around 2 for the 2D part, and 1.8 overall.

V. Conclusions & Future Work

We proposed in this paper a vectorized implementation of MI-
CADO, a neutron transport solver based on a 2D–1D spatial
resolution method. Both the 2D and 1D algorithms were vector-
ized, which required large changes in the implementation. Vec-
torization of the 2D Method of Characteristics (MOC) solver
relies on the use of product quadrature formulas, which is quite
acceptable in the authors’ opinion since such quadrature for-
mulas are routinely used in MOC calculations to reduce the
storage needs for tracking information.



Joint International Conference on Supercomputing in Nuclear Applications and Monte Carlo 2013 (SNA + MC 2013)
La Cité des Sciences et de l’Industrie, Paris, France, October 27–31, 2013

The implementation targets Intel SSE CPUs, but should also
be suitable for more recent SIMD instruction sets such as AVX
and AVX-512. The efficiency of this vectorized implementation
was assessed on 2D and 3D geometries from the TAKEDA
neutron transport benchmark, where nearly optimal speedups
were obtained. Indeed, for the Step Characteristics scheme
in single precision, the vectorized 2D solver demonstrates a
speedup of 3.7 (for a maximal obtainable value of 4). The fully
vectorized 3D spatial solver (including both the 2D MOC and
1D MOC-like solvers) allows obtaining speedups higher than
4.5 (which is above the theoretical maximal value thanks to the
use of a fast vectorized exponential implementation).

All these results were performed using the solver in sequen-
tial settings. Perspectives include merging the new vector-
ized implementation with the parallel algorithms already imple-
mented in MICADO. Since the distributed memory parallelism
works on 2D slices, its performances should not be affected
by the vectorization. Decreases in shared-memory parallel
efficiency should however be expected since the current im-
plementation parallelizes the loop on angular directions which
was modified by the vectorization. A new shared-memory
parallelization strategy could therefore need to be developed.
Parallelizing the 2D sweep seems to be an idea worth investi-
gating.

References

1) R. Sanchez, “Prospects in Deterministic Three-dimensional
Whole-Core Transport Calculations,” Nuclear Engineering and
Technology, 44, 2, 113–150 (2012).

2) N. Cho, G. Lee, and C. Park, “Fusion of Method of Characteristics
and Nodal Method for 3-D Whole-Core Transport Calculation,” ,
86, 322–324 (2002).

3) S. Kosaka and T. Takeda, “Verification of 3D Heterogeneous
Core Transport Calculation Utilizing Non-linear Iteration Tech-
nique,” Journal of Nuclear Science and Technology, 41, 6, 645–
654 (2004).

4) J. Y. Cho and H.-G. Joo, “Solution of the C5G7MOX benchmark
three-dimensional extension problems by the DeCART direct
whole core calculation code,” Progress in Nuclear Energy, 48,
456–466 (2006).

5) F. Févotte and B. Lathuilière, “MICADO : Parallel Implementa-
tion of a 2D–1D Iterative Algorithm for the 3D Neutron Transport
Problem in Prismatic Geometries,” Proc. Proc. M&C2013, Sun
Valley, ID, USA, May, 2013.

6) F. Petrini et al., “Multicore surprises: Lessons learned from opti-
mizing Sweep3D on the Cell Broadband Engine,” Proc. Parallel
and Distributed Processing Symposium, 2007. IPDPS 2007. IEEE
International, p. 1–10, IEEE, 2007.

7) P. Micikevicius, “GPU Performance Analysis and Optimization,”
Proc. GPU Technology Conference, 2012.

8) M. J. Halsall, “CACTUS, a Characteristics Solution to the Neu-
tron Transport Equations in Complicated Geometries,” AEEW-
R 1291, Atomic Energy Establishment (1980).

9) S. Santandrea, R. Sanchez, and P. Mosca, “A Linear Surface
Characteristics Scheme for Neutron Transport in Unstructured
Meshes,” Nuclear Science and Engineering, 160, 22–40 (2008).

10) A. Hébert, Applied Reactor Physics, Presses Internationales
Polytechnique (2009).

11) A. Yamamoto, Y. Kitamura, and Y. Yamane, “Computational Ef-
ficiencies of Approximated Exponential Functions for Transport

Calculations of the Characteristics Method,” Annals of Nuclear
Energy, 31, 1027–1037 (2004).

12) R. Sanchez, L. Mao, and S. Santandrea, “Treatment of Boundary
Conditions in Trajectory-Based Deterministic Transport Methods,”
Nuclear Science and Engineering, 140, 23–50 (2002).

13) “Ivanoe – iDataPlex, Xeon X56xx 6C 2.93 GHz, Infiniband,”
http://top500.org/system/177030.

14) P. Gepner, V. Gamayunov, and D. L. Fraser, “Early performance
evaluation of AVX for HPC,” Procedia Computer Science, 4,
452–460 (2011).

15) A. Yamamoto, M. Tabushi, N. Sugimura, T. Ushio, and M. Mori,
“Derivation of Optimum Polar Angle Quadrature Set for the
Methodof Characteristics Based on Approximation Error for the
Bickley Function,” Journal of Nuclear Science and Technology,
44, 2, 129–136 (2007).

16) T. Takeda and H. Ikeda, “Final Report on the 3-D Neutron Trans-
port Benchmarks,” OECD/NEA Comittee on Reactor Physics
(1991).

17) “Eigen: a C++ template library for linear algebra,”
http://eigen.tuxfamily.org/index.php?title=Main_Page.


	Introduction
	Presentation of the MICADO Solver
	Method
	2D–1D equations
	Discretization using the MOC
	Integration schemes
	Sweeping algorithms

	Parallel Implementation

	Vectorization of MICADO
	Intel SSE
	Quadrature formulas
	Vectorization of the 2D solver
	Vectorization of the 1D solver

	Numerical Results
	Benchmark
	Results for the 2D case
	Results for the 3D case

	Conclusions & Future Work

