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A generalization of 3D prismatic characteristics
along a nonuniform projection mesh
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Large scale tri-dimensional transport calculations in unstructured meshes are limited in scale mostly by the amount
of data to process (memory space limitations), the number of operations to perform (computational time limitations),
or both. A method relying on a prismatic projection of non-uniform 3-D geometries is proposed, that reduces both
memory space and computation time without introducing new approximations and opens new possibilities regarding
large scale parallel processing.
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I. Introduction

Recent developments in computer power and advances in
parallel processing have made reference full-core neutron
transport calculations likely to be achievable within the
next few years. Even though concerns remain regarding
the optimization of the energy mesh or the generation of
nuclear data (see Sanchez(1)), such a reference calculation
scheme would still provide advantages related to the validation
and improvement of industry models and the analysis of
complex coupling phenomenon between neutronics and
thermal-hydraulics.

The main hurdles remaining in that regard concern both
the quantity of information to manage and the number of
computing operations to perform. Based on preceding work
by LeTellier,(2) and introducing a generalized prismatic
projection of the 3-D geometry, we propose a method that
purports to help solve both these problems. The Method
of Characteristics (MoC)(3) implanted in the lattice code
DRAGON,(4) will serve as a basis for this study.(5)

Similar ongoing efforts can be found in the literature
and range from a 2-D/1-D flux decomposition,(6) leading
to an alternative MoC iterative algorithm, to unstructured
meshes using straight or curved triangular prisms solved using
discontinuous Galerkin finite elements.(7) The algorithm
proposed here presents the advantage of relying only on an
alternative but exact description of the geometry, introducing
no new physical approximations, to ultimately provide a
solution to the regular tri-dimensional transport equation using
proven and reliable legacy solvers.

Here, we propose the treatment of a full tri-dimensional
geometry (relying on certain assumptions met by most
nuclear reactors) using a projected representation for tracking,

combined with an extrusion process to reconstruct the
tri-dimensional tracks upon flux computation, with no new
approximations introduced. Preliminary results show a
reduction of memory requirements by as much as 4 orders
of magnitude, and a reduced computational burden in some
situations. However, these results are highly dependent on
the original geometry, the best results (in comparison to
3-D solvers) being observed when the geometry is relatively
uniform axially, and is not too extended in the direction of
projection (relatively small height to width ratio).

This new geometry processing capabilities also open new
axes of parallelization for the flux solver. In analyzing previous
works,(8) we can expect good speedups, which, when combined
with the reduced memory requirements, can provide an ideal
solver for large-scale parallel deterministic 3-D transport in
unstructured meshes.

This paper first presents a short review of the method and for-
malism used, followed by an illustration and explanation of the
aforementioned modified geometry description. Two test-cases
are then exposed to illustrate both the new capabilities and
performances of such a solver. Finally, the short conclusion
presents expected developments and new possibilities offered
by this projection technique as related to parallel processing.

II. MoC transport

1. Method of Characteristics

Using the formalism presented in Hébert,(9) the Boltzmann
transport equation can be written as :

Ω̂ · ~∇φ(~r, E, Ω̂) + Σ(~r, E) φ(~r, E, Ω̂) = Q(~r, E, Ω̂) (1)
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where φ is the neutron flux at point ~r in direction Ω̂ with
energy E, Σ is the macroscopic total cross section and Q is
the neutron source that includes both fissions and diffusions.
This equation can be solved using a number of methods, both
deterministic and stochastic.

Here, we will consider a deterministic solution to the trans-
port equation based on the method of characteristics. This
technique relies on a transformation of eq. (1) into a series
of ordinary differential equations (ODE) along tracks ~T span-
ning the whole geometry. This process is known as tracking.
As a result, the previous equation along an arbitrary track in
direction Ω̂ can be written, using s as an index representing
displacement along the track, as :

d
ds
φ(~r + sΩ̂, Ω̂) + Σ(~r + sΩ̂)φ(~r + sΩ̂, Ω̂) = Q(~r + sΩ̂) (2)

The tracking operator is then defined in such a way as
to be consistent with an angular quadrature that spans 4π
for a 3-D calculation. Then, a plane ΠΩ̂ is defined for
every direction Ω̂, upon which a surfacic density is used to
generate the starting points of individual tracks ~T . Thus, a
global number of tracks are produced, along with their inte-
gration weights, in effect providing a 4-D numerical quadrature.

The geometry is then discretized into finite volumes in
such a way as to ensure that the MoC assumptions on the
spatial behaviour of the sources are met. Along each track,
intersections with the discretized geometry are located, and
both the chord lengths and medium indices are stored for later
use within the flux solver.

Using a step characteristic (SC) integration scheme, whereby
the source term Q is assumed constant over a discretized spatial
region, we can solve analytically eq. (2) along every segment,
to yield, using the optical path τg(s) =

∫ s
0 Σg(~r − s′Ω̂) ds′, the

following propagation relations :

φk+1(~T ) = e−τk(~T )φk(~T ) +
Qk(Ω̂)

Σk
[1 − e−τk(~T )] (3)

φ̄k(~T ) =
φk(~T )

τk(~T )
[1 − e−τk(~T )] +

Qk(Ω̂)
Σk

1 − 1 − e−τk(~T )

τk(~T )

 (4)

where φ̄k is the average flux on a segment k, and φk is the flux at
the intersection of segments k and k−1. The angular flux within
each spatial region can then be obtained through an iterative
process.

2. Tracking and normalization

Using the MoC formalism, we can therefore transform volume-
integrated quantities into integrals over the tracking. The track-
ing operator mentioned previously can be expressed, for an
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Figure 1: Decoupling of the azimuthal and polar dependencies in
ϕ and θ 1

arbitrary function f defined over a region Ri, as:

Fi(Ω̂) =

∫
Ri

f (~r, Ω̂) d3r

=

∫
ΠΩ̂

∫ ∞
−∞

Wi(s, ~T ) f (~T ) ds d2 p (5)

where we defined the characteristic functionWi(s, ~T ) worth 1
if point s of characteristic ~T is within region Ri, or 0 otherwise.
In particular, these equations can be used both to obtain the
angular flux ( f (~r, Ω̂) = φ(~r, Ω̂)), or, using f (~r, Ω̂) ≡ 1, to
provide an angular-dependent approximation to the regional
volumes. Scalar quantities such as the integrated flux can then
be computed as:

Fi =
1

4π

∫
4π

Fi(Ω̂) d2Ω (6)

These numerical volumes are important when compared
to actual volumes of the region as a way to improve the
quality of the results, in partially correcting the numerical error
introduced by the tracking quadrature. In practice, the track
lengths are modified using the numerical-to-analytical volumes
ratio – that should be as close to 1 as possible.

III. Generalized prismatic projection

1. Projection

Since most nuclear reactors present a form of invariance along
a certain axis for some distance (we use z in this instance,
but any other reference direction can be considered assuming a
simple rotation), it is possible to simplify the tracking procedure
presented in the last section. The angular component of the

1Figured inspired by LeTellier et al.(2)
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tracking operator in equation (6) can be decomposed, without
loss of precision, into azimuthal (ϕ) and polar (µ = cos(θ))
components, such as:∫

4π
F(Ω̂) d2Ω ≡

∫ 2π

0

∫ 1

−1
F(ϕ, µ) dµ dϕ (7)

Using an orthogonal basis (I⊥, I‖)Ω̂, as illustrated in Figure 1,
we can then separate the tracking along these two components,
where a displacement of p⊥ along I⊥ remains in the (x, y) plane
of the projected geometry, yielding:

Fi =
1

4π

∫
4π

∫
ΠΩ̂

∫ ∞
−∞

Wi(s, ~T ) f (~T ) ds d2 p d2Ω

=
1

4π

∫ 2π

0

∫ 1

−1

∫
I⊥

∫
I‖

∫ ∞
−∞

Wi(s, ~T ) f (~T ) ds dp‖ dp⊥ dµ dϕ

=
1

4π

∫ 1

−1

∫
I‖

[∫ 2π

0

∫
I⊥

∫ ∞
−∞

Wi(s, ~T ) f (~T ) ds dp⊥ dϕ
]

dp‖ dµ

(8)

In this process, we also need to ensure that the directional
quadrature (d2Ω) is the product of polar and azimuthal
quadratures. As a result, the set of projected tracks is akin to
a traditional 2-D tracking, associated with specific values of
p‖ and µ, and can therefore be calculated by legacy tracking
modules, with minimal modifications.

In order to use this simplified tracking procedure, one
must establish a projection transformation (see Figure 2),
where the global geometry is divided along z in Nz sections
that are constant along a portion of the projection axis. The
correspondence between the 3-D and 2-D geometries is then
ensured – and no loss of information occurs – by creating a
mapping matrix associating each 3-D region to one or more
2-D regions, depending on its corresponding position(s) in the
original 3-D geometry.

In practice, the procedure starts by a series of tests to ensure
that all elements are in fact prismatic, and can be projected in
a single plane. The geometric elements are then combined
along the whole height of the geometry, and in the same
process the numbering of regions and surfaces to be used are
created. Finally, the projection matrix is created, ensuring
a unique correspondence between projected 2-D elements
and specific z-positions. This whole procedure is not trivial
except for simple geometries, and for complex cases this
rapidly generates very complex 2-D geometries that also imply
complex numbering and correspondence processes.

It is also worth mentioning that outer surfaces are also
indexed, meaning that for a projected geometry containing
N external surfaces and M regions, created from a geometry
comprising Nz piecewise invariant axial regions, the dimen-
sions of the matrix have to be [(M + N + 1) × (Nz + 2)], the
two additional rows representing additional elements required
to index the top and bottom outer surfaces of the original 3-D
geometry. A simple example can be seen in Table 1, referring
to the combination illustrated in Figure 3. Surfaces, indexed

Figure 2: Creation of the 2D projected geometry

using negative indices in DRAGON, are not all indicated to
preserve readability.

A traditional azimuthal 2-D tracking can then be performed
on this “superdiscretized” geometry, saving disk space (3-4
orders of magnitude, depending on the geometry considered),
that can afterward be used in a modified 3D flux solver.

2. Extrusion

As a consequence of this projection, the flux solver will need to
“raise,” or extrude, each 2-D segment, using a polar quadrature,
and the lengths of the 3-D tracks will be easily obtained as
multiples of the polar angle cosine and of the 2-D lengths. The
angular flux is then computed as usual along this recomposed
tri-dimensional track.

However, the initial projection has produced “virtual”
regions in the new geometry – that is, regions that are
created when the discretization changes as we move along the
projection axis, such as region 9 in Figure 3. These regions
have no physical signification in themselves, but only in
relation to the original geometry. Each of their boundaries
therefore represents a boundary that will exist or not depending
on the height along the projection axis, translating into either a
"real" or a "virtual" frontier.

This also has to be taken into account during the recon-
struction process. Thus, reconstructed tracks will need to
have segments merged when they cross such a “virtual”
boundary. In practice, the reconstruction process relies on the
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Figure 3: Numbering of the projected geometry

2-D region 3-D region number
number z1 z2

... ... ...
-6 -4 -12
-5 -3 -12
-4 -3 -11
... ... ...
1 1 9
2 2 9
3 3 9
4 4 9
... ... ...
17 8 12

Table 1: Sample projection matrix

correspondence matrix created in the original projection of the
geometry. Every individual 2-D track created in the projected
geometry that is raised encounters exclusively a conformal
cartesian mesh. This mesh however contains some of these
virtual boundaries, that can be easily identified, since the
regions on each side of such a boundary are identified within
the matrix to the same 3-D region number.

Upon extruding, when such a boundary is encountered, we
therefore only have to merge the two track segments, adding
their lengths to compute the new optical length, processing
them as one, and following the progression according to eq. (4).
An illustration is provided in Figure 4, in which the black line
represents a virtual frontier, and the merged tracks are visible.

2

2

2

2

Figure 4: Extrusion of a 2-D track through a virtual boundary

3. Normalization

Finally, as mentioned in section II.2, normalization volumes are
used to ensure better numerical precision. However, since in
this case the tracking has been performed on the 2-D projected
geometry, these ratios are unavailable to normalize individual
tracks at that moment.

Moreover, as can be seen in Figures 2 and 3, regions in the
projected geometry are generally smaller than the regions in the
original geometry due to the added virtual frontiers – especially
for very small axial variations in the geometry. This therefore
might require a high track density to ensure that each 2-D
region is adequately taken into account. Normalization using
this 2-D tracking would however be more prone to numerical
instabilities due to the small quantities involved, in addition
to not being ideal since the flux itself is computed on the
tri-dimensional tracks.

A preliminary extrusion therefore has to be performed before
entering the flux solver, to calculate those values for the 3-D
reconstructed regions. This has the additional advantage to
provide a first evaluation of the precision of the tracking
process, permitted by the comparison of the numerical volumes
to the analytical ones.

IV. Applications

Two test cases will be exposed in this section. The first is
a simple and small geometry to be analyzed and compared
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3-D Prism. Diff.
Group 1
Integrated flux 2.59513E+01 2.59513E+01 <0.20 pcm
Collision rate 4.47792E+00 4.47797E+00 -1.12 pcm
Absorption rate 2.74911E-02 2.74997E-02 -31.28 pcm
Scat. rate within 3.46734E+00 3.46740E+00 -1.73 pcm
Scat. rate without 9.83081E-01 9.83065E-01 1.63 pcm
Group 2
Integrated flux 6.98662E+01 6.98672E+01 -1.34 pcm
Collision rate 7.65036E+01 7.65048E+01 -1.56 pcm
Absorption rate 9.72511E-01 9.72504E-01 0.72 pcm
Scat. rate within 7.55212E+01 7.55224E+01 -1.59 pcm
Scat. rate without 9.87214E-03 9.87233E-03 -1.92 pcm
ke f f 0.5470143 0.5469787 6.51 pcm
CPU time (tracking + flux) 106s+1633s 1s+181s 10%
Tracking size 350208 Kb 73 Kb 0.02%
Nbiter (outer) 5 5 0
Nbtracking sweeps 33 33 0

Table 2: Comparison of 3-D MoC to extruded geometries

to reference solvers using the traditional three-dimensional
method of characteristics. The second illustrates the new reach
of possible simulations by simulating a deformed, simplified
PWR assembly.

1. Pin end

This first test-case is used as the representation of the end
of a pin topped by the moderator. We describe a geometry
resembling that of Figure 3, with an enriched uranium
fuel pin and light water moderator surrounding it. This
configuration enables the exploitation of the newly devel-
oped generalized prismatic capabilities, as well as enabling
a valid comparison between this solver and legacy MoC solvers.

As such, the results presented in Table 2 show an accuracy
on par with the traditional 3-D method of characteristics, while
providing reduced computation time and memory requirements.
The calculation was performed using a 2-D step of 1mm
between tracks, and then extruded using the same step along
the normal to the polar extrusion angle. This translates to
a 100cm−2 (10cm−1× 10cm−1) density for the regular tracking,
along with an equivalent quadrature providing 96 angles per
octant in both cases.

As can be seen by these results, the method proves both
reliable and robust, and doesn’t affect the iterative process,
since it only modifies the innermost MoC iterations upon
integrating along individual tracks. Also worth noting is the
fact that it uses both less CPU time and much less memory
than a traditional 3-D computation, while delivering the same
level of accuracy.

2. Deformed assembly

In this section, we describe a simplified representation of one
PWR assembly composed of 3 × 3 pins that has been axially
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Figure 5: Cell equivalence

deformed. Such a bowed assembly will have a profile similar
to that of Figure 6.

Since the implementation we developed does not yet provide
capabilities regarding multiple cylindrical pin superposition (as
illustrated in Figure 2) due to numbering incompatibilities of
overlapping annular regions, we have used 2-D geometries to
provide a transport-transport equivalence between the regular
cylindrical pins and their cartesian equivalent, created such as
to preserve the volumes of each region. This circumvents the
problem by creating an easily treatable non-regular cartesian
mesh.

As such, an SPH equivalence procedure(10) has been
performed on corner (illustrated in Figure 5), side and center
cells. The resulting geometric sections of the rectangularized
pins can be seen in Figure 7, with the combined projected
geometry of Figure 8 showing clearly the very small regions
created by such a process – particularly near the cladding of
the pins.

As expected, the tracking file resulting from such a
projection is much smaller than a regular 3-D equivalent.
For this comparison, we used an equivalent quadrature, in
this case an azimuthal trapezoidal quadrature combined
with a polar Legendre quadrature proposed by Sanchez et
al.,(11) providing the same final number of tracks in the 3-D
geometry and in the extrusion treatment. The size of the
storage required for the traditional tracking procedure is over
3Gb, whereas the projected geometry requires only 345Kb,
including the additional space to store the 2-D projection and
the correspondence matrix.
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Figure 7: Normal and deformed cartesian cells
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Figure 8: Projected cartesian cells

Direct comparison between the general and projected
solutions are however not possible in this case, as the 3-D
solver proved to have tracking and convergence issues. This
only serves to prove the pertinence of the method, as apparently
bigger cases can be expected to be treated using prismatic
extrusion.

3. Discussion

Previous efforts(2) also show than an improvement in overall
computation time is possible using a prismatic algorithm
that did not consider axial variations. While we did reduce
drastically the time spent in the tracking module for the
assembly case (over 30 min to about 4 seconds), the extra
computational burden required to extrude the tracks seems to
cancel this advantage, since the first iterations of the regular
3-D solver were faster than the prismatic ones.

In particular, we can suppose that since this test geometry
is very tall in relation to its base (ten to one), the extrusion
overhead cost is expected to diminish as we extend the
dimensions of the projected geometry. Moreover, the precon-
ditioning acceleration techniques available in the code are
no longer compatible with the track merging process used
in the extrusion approach. This could certainly explain the
discrepancy observed, and can be expected, once they are
adapted, to reduce the overall computation time.

Finally, considering that increasingly computer applications
performances are limited by disk accesses, this time-memory
trade-off is expected to be beneficial in the long run.

V. Parallelization

Considering lattice calculations, the method of characteristics
is already better suited than the collision probability method
for parallel computing, being that each segment contributes
(relatively) independently to the final flux calculation once it
has been generated through the tracking process, minimizing
shared data.

In a traditional solver, parallelization may be applied at
various levels, including loops over the solid angles Ω̂, over
each individual track ~T , and over the multigroup energy
mesh. One of the main advantages of the projection method
proposed here, is that it provides new avenues for the large
scale parallelization of the solver.

In a prismatic configuration, the traditional tracking
parallelization levels, which become loops over the azimuthal
(2-D) angles of the projected geometry and on each of the
computed tracks. To these can be compounded additional axes
over the (polar) extrusion angle, and over z (as a vertical shift,
used to recreate the original 4-D numerical quadrature). These
then open up further parallel processing possibilities, matching
the parallel options used in 3-D solvers.

We can then consider the following axes :

• the 2-D ϕ angles in the projected geometry ;

• each individual 2-D track in the projected geometry ;

• the 3-D Ω̂ directions (related to µ) upon extrusion ;

• each individual 3-D reconstructed track ;

• the energy groups ;

Furthermore, as discussed by LeTellier,(5) a parallelization
can be considered over the algebraic collapsing acceleration
operator (ACA), reducing the time required to compute the
connexion matrices. This opens up a new possibility when
combined with a parallel extrusion process.

VI. Conclusion

This paper proposes a new scheme of transport calculations
based on a geometric projection, reducing both memory
requirements and, in certain cases, computation time, based
on the method of characteristics. Two test-cases were studied,
with reductions in the computational burden by as much as
90% were observed (case 1), and in the size of the tracking file
for large scale problems by as much as 4 orders of magnitude.

In addition to these advantages, the procedure opens new
parallelization axes offering a further broadening of the scope
of applicability of transport theory in unstructured meshes
to spatially larger problems, ultimately leading to a full core
calculation in a non-prohibitive time.
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All in all, this procedure greatly reduces the amount of
storage required for large scale 3-D problems in comparison
with a full 3-D calculation, even when considering the
additional memory requirements of the projection matrix.
Interesting cases can involve, for example, multiple PHWR
misaligned clusters, partially inserted PWR control rods, or
grids and reflectors that do not require the same level of dis-
cretization as the fuel rods. The larger the scale of the problem,
the more advantageous the method, since these are cases
that will generally be memory-bound for a transport calculation.

Some limitations do however apply, most notably regarding
the range of allowed geometries. As constructed, the method
forbids the inclusion of non-prismatic elements – such as
pebbles in VHTR reactors – or elements that do not respect the
privileged projection direction, such as CANDU control rods.
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