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Abstract

The method of discrete ordinates (SN ) is a popular choice for the solution of
the neutron transport equation. It is however well known that it suffers from
slow convergence of the scattering source in optically thick and diffusive media,
such as pressurized water nuclear reactors (PWR). In reactor physics applica-
tions, the SN method is thus often accompanied by an acceleration algorithm,
such as Diffusion Synthetic Acceleration (DSA). With the recent increase in
computational power, whole core transport calculations have become a reason-
able objective. It however requires using large computers and parallelizing the
transport solver. Due to the elliptic nature of the DSA operator, its paralleliza-
tion is not straightforward. In this paper, we present an acceleration operator
derived from DSA, but defined in a piecewise way such that its parallel imple-
mentation is straightforward. We mathematically show that, for optically thick
enough media, this Piecewise Diffusion Synthetic Acceleration (PDSA) scheme
preserves the good properties of DSA. This conclusion is supported by numerical
experiments.

Keywords: DSA, Diffusion Synthetic Acceleration, Parallelization, Fourier
analysis

1. Introduction

The simulation of neutron transport phenomena in nuclear reactor cores
requires the solution of the Boltzmann Transport Equation (BTE). We focus in
this paper on the simulation of Pressurized Water Reactors (PWR). For such
reactors, the geometry and materials used make the domain optically thick and
diffusive, meaning (i) that the core size represents a large number of neutron
mean free paths, and (ii) that scattering represents a large fraction of neutron-
matter interactions. In such cases, the diffusion equation is often considered a
good enough alternative to the BTE, which is why most industrial calculations
rely on a 2-step scheme:
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1. the BTE is solved in 2D, at the scale of an assembly, with relatively fine
spatial and energetic discretization. This calculation produces homoge-
nized and condensed cross-sections;

2. these homogenized and condensed cross-sections are fed to a 3D diffu-
sion or Simplified Transport (SPN ) calculation, which is performed at the
scale of the reactor core and uses a relatively coarse spatial and energetic
discretization.

Such a scheme has the advantage of involving neutron transport calculations
only at the scale of the fuel assembly and for two spatial dimensions. In such
calculations, energy is traditionally discretized using the multigroup formalism,
and the angular variable is handled by the discrete ordinates (SN ) method.
Various methods can be used to discretize the spatial operators, but we will not
consider such details in this paper. As was uncovered by early adopters of the SN
formalism, this method suffers from a major problem in optically thick diffusive
media: the classical Source Iteration (SI) scheme converges very slowly in this
case. To remedy this issue, the Diffusion Synthetic Acceleration (DSA) scheme
has been proposed as early as the late 1970s [1, 2, 3], and remains one of the
most popular acceleration schemes today, especially for Cartesian geometries.

However, the approximations induced by the use of such 2-step schemes
need to be assessed, which is why full core 3D neutron transport solvers are still
needed. We focus here on the solution of the 3D stationary BTE, which is one of
the most important building blocks for state-of-the-art 3D whole-core criticality
calculations. Even though it ignores the time variable, the 3D stationary BTE
is still set in a 6-dimensional phase space (3 for space, 2 for travel direction and
1 for energy). Its discretization at the scale of the full reactor core therefore
quickly produces very large problems of size on the order of 1010 to 1012 degrees
of freedom, whose solution has remained largely out of reach before the early
2010s [4, 5, 6], when big enough supercomputers became available, along with
numerical methods able to efficiently harness them.

Devising and implementing parallel methods able to efficiently solve the
transport equation for such large problems is in itself no easy task, the major
difficulty lying in the fact that the hyperbolic nature of the transport equa-
tions implies dependencies between cells. However, another practical difficulty
arises, in the case of optically thick geometries, from the need for an acceler-
ation scheme that (i) accelerates the Source Iteration scheme, and (ii) can be
efficiently parallelized using the same data distribution as the transport solver.

A first technique consists in keeping the traditional DSA scheme, and paral-
lelizing it alongside the transport solver. This presents the advantage of reusing
the same whole-core diffusion solvers as the second step mentioned above. How-
ever, industry-grade neutron diffusion solvers are generally sequential, and the
elliptic nature of the diffusion equation makes their parallelization a challenging
task. Although efficient parallel diffusion solvers can be implemented [7, 8], the
induced code complexity is often considered a heavy price to pay. The same
is also true in the case of alternate acceleration methods such as Coarse-Mesh
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Finite Differences [9], which are also elliptic in nature and thus difficult to par-
allelize.

Other techniques consist in departing from the standard Source Iteration
& DSA scheme. For example, DENOVO uses a Krylov solver [4], which con-
verges faster than the traditional multi-group Gauss-Seidel algorithm and an-
gular Source Iteration and alleviates the need for an acceleration scheme. Such
a Krylov solver can still be further preconditioned, for example using multi-
grid methods in energy [10]. While very efficient, the implementation of such
techniques makes the reference neutron transport code share few software com-
ponents, or even algorithms, with the industrial diffusion code. This, once again,
makes the development, maintenance and verification price heavy to pay for the
industry.

In this paper, we introduce the Piecewise Diffusion Synthetic Acceleration
scheme (PDSA), a new acceleration method for parallel neutron transport cal-
culations, specifically designed to minimize the development effort and reuse
as much code as possible from existing diffusion solvers. Indeed, the scheme
is defined in such a way that any code implementing transport iterations ac-
celerated by a DSA operator (with consistent spatial discretization schemes),
can be transformed in a PDSA implementation at practically no programming
cost. We will focus here on the definition of PDSA, and on the proof that it
converges at the continuous level, along with simple 1D numerical experiments.
We show in a companion paper [11] how this has been implemented in EDF’s
COCAGNE [12] platform, which features a diamond-difference SN transport
solver, accelerated by an SP1 solver using mixed dual Raviart-Thomas (RTk)
finite elements [13, 6].

The remainder of this paper is organized as follows: in the following part,
we briefly describe PDSA. We then proceed to a Fourier analysis in part 3: we
review the standard unaccelerated transport Source Iteration, as well as DSA.
Then, we Fourier analyze the proposed PDSA scheme. We show in particular
how it can be seen as a perturbation of standard DSA, and derive conditions
under which the perturbation is small enough that convergence properties of
DSA are not lost. In part 4, we assess the validity of the theory by performing
a few numerical experiments in 1D. We finally make a few concluding notes in
part 5.

2. Description of the Piecewise Diffusion Synthetic Acceleration

In this section, we briefly describe and introduce the Piecewise Diffusion
Synthetic Acceleration scheme. The focus here is on the definition of the scheme,
while part 3.3 will be devoted to the analysis of its properties.

2.1. Standard DSA

As underlined in the introduction, PDSA is defined as a perturbation to
the DSA scheme. We thus start with recalling the standard equations of DSA.
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Let us consider the following time-independent, one-group neutron transport
equation with isotropic scattering:

∀Ω ∈ S2,∀r ∈ D,

Ω · ∇ψ(r,Ω) + Σ(r)ψ(r,Ω) = Q(r) +
Σs(r)

4π

∫
S2

dΩ′ ψ(r,Ω′), (1)

with void boundary conditions to model a full core:

∀r ∈ ∂D,∀Ω ∈ S2 such that Ω · n(r) < 0,

ψ(r,Ω) = 0.
(2)

In the equation above, ψ(r,Ω) denotes the neutron flux at position r and in
direction Ω. The total and scattering cross-sections are denoted by Σ and Σs

respectively, and Q is a source term coming from outer iterations. The spatial
domain is denoted by D, and its boundary by ∂D. The normal vector to this
boundary is n, so that the boundary condition above states that no flux enters
the domain.

In this context, traditional DSA is defined as follows. In a first stage, the
streaming operator is inverted:

Ω · ∇ψ`+ 1
2
(r,Ω) + Σ(r)ψ`+ 1

2
(r,Ω) = Q(r) + Σs(r) φ`(r), (3)

where inner iteration index ` was introduced, along with the scalar flux

φ`(r) =
1

4π

∫
S2

dΩ ψ`(r,Ω).

In a second stage, an approximate diffusion operator is solved

div

(
1

3 Σ
∇φ̃`+1

)
+ Σ φ̃`+1 = Σs

(
φ`+ 1

2
− φl

)
. (4)

While the original void boundary conditions (2) can be retained for transport
equation (3), they have no meaning for diffusion equation (4) whose unknown
is a scalar flux. They are thus replaced with a boundary condition operating on
φ, which can be either of Robin or Dirichlet type:

φ̃(r) +
2

3 Σt(r)
n(r) · ∇φ̃(r) = 0, ∀r ∈ ∂D, (5a)

or

φ̃(r) = 0, ∀r ∈ ∂D, (5b)

where n(r) denotes the vector normal to boundary at position r ∈ ∂D. In the
latter case of Dirichlet boundary conditions, the position of the boundary might
be artificially shifted by an extrapolation length.

At the end of a Diffusion Synthetic Accelerated iteration, the scalar flux is
updated as follows:

φ`+1 = φ`+ 1
2

+ φ̃`+1.
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Figure 1: Schematic presentation of the PDSA scheme in a 3-subdomain case

2.2. Piecewise DSA

The PDSA scheme described in this paper aims at replacing system (4)–(5)
by an operator which is more local and easier to solve in parallel. Figure 1
illustrates the construction of PDSA on domain D, which has been partitioned
into

D = ∪Ni=1Di,

with N = 3 in the figure. In the following, we temporarily drop iteration
indices ` to simplify the notations.

In a first step, called the Neumann diffusion problem in the following, a flux
correction φ̃in is computed as the solution to equation (4) in each subdomain Di.
Boundary condition (5) is considered for the outer boundary ∂D∩∂Di. However,
at inner interfaces between subdomains, an homogeneous Neumann boundary
condition is used:

∇φ̃in(r) · n(r) = 0, ∀r ∈ Γi = ∂Di \ ∂D. (6)

The second step, hereafter called the Dirichlet diffusion problem, differs from
the first only with respect to the boundary conditions at the interface. A flux
correction φ̃id is computed as the solution to equation (4) in each subdomain,
but in this case an inhomogeneous Dirichlet boundary condition is used at the
interface between subdomains: for any two subdomains Di and Dj sharing a
common interface Γi,j ,

φ̃id(r) = φ̃jd(r) =
1

2

(
γΓi,j

(φ̃in) + γΓi,j
(φ̃jn)

)
, ∀r ∈ Γi,j .

In the equation above, γΓi,j
denotes the trace function on the Γ interface, so

that the value at the interface is computed as the half-sum of values coming
from both subdomains at first step.
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The solution to this second step is used to update the scalar flux at the end
of a PDSA iteration:

φ`+1(r) = φ`+ 1
2
(r) + φ̃d,`+1(r), ∀r ∈ Di, ∀i.

2.3. Discussion: rationale, advantages and limits of PDSA, previous experi-
mental results

As mentioned in introduction, parallelizing the resolution of the diffusion
equation is a rather difficult task. However, as shown by the very classical
Fourier analysis of Source Iteration, the effectiveness of DSA comes from its
ability to handle slowly oscillating error modes. This means that it should be
possible to build effective acceleration operators which do not really solve diffu-
sion problems: all that is needed is that slowly oscillating modes are correctly
handled; other modes can be handled by Source Iteration.

The worst error mode being constant both in space and angle, it has a
zero gradient everywhere. In order to compute it from a set of local diffusion
problems on subdomains, it is therefore adequate to set Neumann boundary
conditions at the interfaces between subdomains. This is the rationale for the
first PDSA step. However, doing this produces flux correction terms which are
discontinuous in the general case (for all non-constant error modes), causing
the accelerated scheme to diverge. This is fixed by the second step, where the
Dirichlet boundary condition ensures the continuity of the flux correction over
the whole domain. The value imposed at interfaces between subdomains is
determined so as to preserve global conservation for the flux correction term.

Although these boundary conditions at interfaces can not be correct, one
can hope that, apart from a boundary layer near interfaces, their impact is
not too significant. Therefore, PDSA is expected to be effective provided that
the subdomains remain sufficiently optically thick that the introduction of the
artificial boundary conditions at subdomain interfaces has minimal impact on
the accuracy of the DSA correction.

Of course, this is no rigorous explanation, and a Fourier analysis of the
proposed PDSA scheme should be conducted in order to study its effectiveness.
This is the topic of section 3.3, in which it will be shown that, when subdomains
are optically thick enough, the PDSA operator can accelerate Source Iteration.
When this is the case, it features some advantages over standard DSA.

First and foremost, it is defined piecewise, which means it can adapt to
any geometric domain partitioning used by the underlying transport solver. In
a parallel context, there is only one point-to-point data exchange, so that the
communication overhead can be considered low with respect to the computations
performed within each subdomain.

Also, the two steps of PDSA are very similar problems. If an iterative solver
is used to solve them, the second step can be initialized with the first to help it
converge faster.

Moreover, if a DSA implementation is already available in a given neutron
transport code (i.e. if a diffusion solver has already been developed, with a
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consistent discretization scheme), PDSA can be implemented at almost no ad-
ditional cost1. This allows for easy parallelization of the acceleration scheme
when parallelizing the transport solver.

Limitations of PDSA obviously lie in the conditions under which it accel-
erates Source Iteration. This limits the number of subdomains which can be
defined for a given calculation. It should however be noted that section 3.3 gives
indicators which can be computed beforehand to estimate the maximal number
of subdomains allowed, or warn a user if the computation might not converge.
Although this does not alleviate the limitation in the number of subdomains, it
at least allows avoiding most common mistakes.

As mentioned in introduction, PDSA has already been implemented in the
DOMINO solver of EDF’s industrial core-calculation platform COCAGNE [12].
Thanks to this implementation, the effectiveness of PDSA has already been
tested in practice. The work presented in [14] shows that, for test cases with
moderate optical thickness, PDSA loses some of the effectiveness of DSA but
remains able to accelerate SI. On the Takeda [15] benchmark (model 1), 282 it-
erations are needed for SI to converge, whereas an optimized DSA implemen-
tation uses only 14 iterations to produce the same converged result. On this
same test-case, the number of PDSA iterations ranges from 48 iterations for
2× 1× 1 subdomains, to 118 iterations for 10× 10× 10 subdomains.

On the other hand, for cases with larger optical thickness such as the 2-group,
S12 critical calculation of a 900MW PWR [14, 11], experiments with DOMINO
show that the effectiveness of PDSA is much closer to that of DSA. This test
case requires 315 unaccelerated iterations to converge, while the number of
accelerated iterations ranges from 56 for standard DSA, to 71 for PDSA with
4× 4× 4 subdomains. This represents an increase of only 27% in the number of
iterations, for a calculation which allows using 64 cluster nodes and 1536 cores.

The objective of the present paper is to present some theoretical background
supporting these experimental findings, thus allowing to gain more confidence
in PDSA.

2.4. Relationship to domain decomposition methods

It should be noted that the two diffusion steps (Neumann and Dirichlet)
in PDSA correspond to the first iteration of a Domain Decomposition (DD)
technique called the Dirichlet–Dirichlet algorithm in [16], or the Dirichlet pre-
conditioned FETI method introduced in [17]. It is also related to Neumann–
Neumann methods (which have been studied as early as [18]), in which each
iteration defines the same two steps in the reverse order (the Dirichlet problem
is solved first, and imposes a boundary condition to the Neumann problem).

All these domain decomposition techniques differ from the PDSA scheme
proposed here, in that they are defined as iterative methods, i.e. it is proved

1The only missing feature might be inhomogeneous Dirichlet boundary conditions, which
are not always implemented in diffusion solvers.
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that, whatever the value imposed on the interface at the first iteration, they
converge to the solution of the diffusion problem when multiple iterations are
performed. But nothing is said of the solution given after the first iteration. In
our case, we impose a null current boundary condition in the Neumann step (6),
and are able to prove that one iteration is enough to make PDSA convergent
under some assumptions.

Should these conditions become too restrictive in practice, then a potential
solution could be to add more Dirichlet–Dirichlet iterations, and turn PDSA
into a full domain-decomposition technique. However, this increases the number
of computations (and the number of communications in a parallel setup). In
such a case, it would be interesting to compare the efficiency of the Dirichlet–
Dirichlet method to other DD techniques such as the one described in [8]. Such a
comparison should be performed in the specific case of DSA problems, since the
diffusion solver is only required to attenuate some error modes in this context.

3. Fourier analysis

The 1D Fourier analysis is the primary tool used in the literature for the
study of acceleration schemes [3]. In this section, we briefly review the well-
known Fourier analysis of the standard Source Iteration and DSA schemes,
before extending it to the proposed PDSA scheme.

We will perform this analysis for an homogeneous infinite 1D slab geome-
try, modeled by the finite spatial domain D = [0, L], with reflective boundary
conditions. In this case, the neutron transport problem can be written as:

µ
∂ψ

∂x
(x, µ) + Σψ(x, µ) =

Σs

2

∫ 1

−1

ψ(x, µ′) dµ′ +Q(x),

ψ(0, µ) = ψ(0,−µ),

ψ(L, µ) = ψ(L,−µ),

(7)

where notations are consistent with equation (1), except that in a 1D geometry,
x represents the spatial variable and µ is the cosine of the angular direction. In
the following, the scattering ratio will be denoted by c = Σs

Σ . It will be assumed
to be strictly less than 1, in order for the transport problem to be well posed.

3.1. Source Iteration

The standard Source Iteration scheme is defined as:
µ
∂ψ`+1

∂x
(x, µ) + Σψ`+1(x, µ) = cΣφ` +Q(x),

ψ`+1(0, µ) = ψ`+1(0,−µ),

ψ`+1(L, µ) = ψ`+1(L,−µ),

(8)
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with the following notation for the scalar flux:

φ`(x) =
1

2

∫ 1

−1

ψ`(x, µ
′) dµ′.

The error after the `th iteration can be defined as e` = ψ(x, µ) − ψ`(x, µ).
This error satisfies an equation similar to (8), but with Q(x) = 0. Analyzing
the convergence of the Source Iteration scheme towards ψ for an arbitrary Q
source term is thus equivalent to studying the convergence towards 0 without
the source term. In the following, we will thus consider Q = 0 and consider the
flux ψ` to be an error term e` for which we will study the convergence towards 0.

The efficiency of the Source Iteration scheme is traditionally studied using
a Fourier analysis. Assuming the (scalar) initial error to be given by

φ0(x) = cos

(
π k x

L

)
, (9)

then the first iteration yields the angular flux

ψ1(x, µ) =
c µω sin (ωΣx) + c cos (ωΣx)

µ2 ω2 + 1
,

where ω = π k
ΣL denotes the frequency of the initial error. After the first source

iteration, the scalar flux is given by

φsi(x) =
1

2

∫ 1

−1

ψ1(x, µ) dµ

= ρsi(ω)φ0(x),

where subscript si denotes the Source Iteration scheme and

ρsi(ω) =
c arctanω

ω
.

In other words, functions of the form given by φ0 are eigenmodes of the
Source Iteration operator, associated to eigenvalues ρsi. After ` source iterations,
the scalar error is given by the expression:

φsi,`(x) = ρ`si(ω) φ0(x).

The solid line in figure 2 presents the evolution of ρsi as a function of fre-
quency ω. It shows that the spectral radius of the Source Iteration scheme is c,
obtained for ω = 0. In diffusive media, convergence can thus become arbitrarily
slow. The slowest modes are defined by low frequencies (ω � 1), and correspond
to a weak spatial and angular dependence:

ψ1(x, µ) ∼
ω→0

c+O(ω2).

This shows that the Source Iteration scheme needs to be accelerated, and that
the acceleration operator will be most effective if it handles slowly oscillating
modes.
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Figure 2: Amplification factors of the Source Iteration and DSA schemes as functions of
frequency ω, in the diffusive case (c = 1).

3.2. Diffusion Synthetic Acceleration

In this section, we describe the Diffusion Synthetic Acceleration scheme,
which can be used to improve the convergence properties of the Source Iteration
scheme.

3.2.1. Diffusion problem

The accelerated scheme starts by a standard source iteration on a transport
operator, as described in equation (8). Subtracting the Source Iteration equa-
tion from the exact transport equation (7) yields the equations satisfied by the
iteration error F`(x, µ) after ` iterations:

F`(x, µ) = ψ(x, µ)− ψ`(x, µ).

Introducing ψ`+1 in the right-hand side, and after rearrangement of the terms,
the equations describing the error are given by:

µ
∂F`+1

∂x
(x, µ) + ΣF`+1(x, µ) = cΣ

[
φ(x)− φ`(x)

]
= cΣ f`+1(x) + cΣ

[
φ`+1(x)− φ`(x)

]
,

F`+1(0, µ) = F`+1(0,−µ),

F`+1(L, µ) = F`+1(L,−µ),

where we denoted by f` the scalar flux associated to error F`:

f`(x) =
1

2

∫ 1

−1

F`(x, µ
′) dµ′.
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This problem is of course as complicated to solve as the initial transport
problem. The principle of DSA consists in replacing it with an approximated
diffusion problem, whose solution is easier to compute. At the first iteration
(` = 0), one thus computes the solution to the following problem:

−1

3Σ
f ′′(x) + (1− c) Σ f(x) = cΣ

[
φsi(x)− φ0(x)

]
,

f ′(0) = 0,

f ′(L) = 0.

(10)

In the problem above, unknown f is supposed to be an approximation to the
scalar flux associated to error F1:

f ' f1.

We can show that the solution to this problem takes the form

f(x) = ρd(ω)φ0(x),

where subscript d denotes that it comes from a diffusion calculation, and we
have introduced

ρd(ω) =
c (3 ρsi(ω)− 3)

ω2 − 3 c+ 3
.

Once again, this shows that functions of the form given by φ0 are eigenmodes
of the diffusion operator.

3.2.2. Flux correction

At the end of a diffusion-accelerated iteration, the scalar flux is given by

φdsa = φsi + f

= (ρsi + ρd) φ0

= ρdsa φ0,

where subscripts dsa denote that the quantities are defined in the DSA scheme,
and the eigenvalue associated to φ0 for the whole iteration is denoted by

ρdsa(ω) =
ω2 ρsi(ω) + 3 ρsi(ω)− 3 c

ω2 − 3 c+ 3
.

The dashed line of figure 2 presents, in the diffusive case (c = 1), the vari-
ation of ρdsa as a function of frequency ω. It shows that low frequency modes
(ω � 1) are associated with significantly lower eigenvalues in the DSA scheme
than in the Source Iteration scheme. The spectral radius of the DSA iteration is
approximately 0.23, obtained for ω ' 2.5. This shows that DSA presents much
more favorable convergence properties than the Source Iteration scheme (see for
example [3] for a more thorough analysis of DSA).
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Figure 3: Partition in subdomains for the Piecewise Diffusion Synthetic Acceleration (PDSA)
scheme.

3.3. Piecewise Diffusion Synthetic Acceleration (PDSA)

We now perform the same analysis, replacing standard DSA by the PDSA
scheme introduced in section 2. Domain D is partitioned in N subdomains
without overlapping. In the remainder of this paper, the following notations
will be used, as explained on figure 3:

l =
L

N
,

xi = i l, 0 6 i 6 N,

Di = [xi−1, xi], 1 6 i 6 N,

ti : Di → D1

x 7→ x− xi−1,
1 6 i 6 N.

Each subdomain is a segment of length l. Translation ti maps subdomain Di
onto the reference subdomain D1 = [0, l].

The Piecewise Diffusion Synthetic Acceleration is defined by the following
steps:

1. a transport source iteration (8) is performed, yielding scalar flux φsi (it
should be noted that this is a standard sweep over the entire domain,
which may or may not be decomposed into subdomains at this stage);

2. a diffusion problem is solved in each subdomain, with outer boundary
conditions coming from (10), and homogeneous Neumann conditions at
interfaces between subdomains:

−1

3Σ
g′′(x) + (1− c) Σ g(x) = cΣ

[
φsi(x)− φ0(x)

]
,

g′(0) = g′(L) = 0,

g′(xi) = 0, 1 6 i 6 N − 1.

(11)

3. a second diffusion problem is solved in each subdomain, again with outer
boundary conditions from (10), but now with inhomogeneous Dirichlet
conditions at the interfaces. The value set for the flux at the interfaces
is obtained as the half sum of the interface values of the solutions in the
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previous step:

−1

3 Σ
h′′(x) + (1− c) Σh(x) = cΣ

[
φsi(x)− φ0(x)

]
,

h′(0) = h′(L) = 0,

h(xi) =
1

2

[
g−(xi) + g+(xi)

]
, 1 6 i 6 N − 1.

(12)

4. at the end of an iteration, the scalar flux is corrected using the solution
of the second diffusion problem:

φpdsa = φsi + h.

3.3.1. Step 1: Neumann diffusion problem

We study here PDSA as a perturbation of the DSA scheme. We therefore
consider the error introduced by the Neumann Diffusion problem (11), with
respect to the global diffusion problem (10):

δ = g − f.

Subtracting (10) to (11), rearranging the terms, and restricting it to D1, we
find that δ|D1

solves the following problem:
−1

3 Σ
δ′′|D1

(x) + (1− c) Σ δ|D1
(x) = 0,

δ′|D1
(x0) = −f ′(x0),

δ′|D1
(x1) = −f ′(x1).

δ|D1
can thus be defined as the linear combination

δ|D1
= −f ′(x0) el

nn − f ′(x1) er
nn,

where functions el
nn and er

nn measure the error due to not knowing the real
boundary values of f ′ respectively on the left and right extremities of D1:

d2el
nn

dx2
(x)− α2 el

nn(x) = 0,

del
nn

dx
(0) = 1,

del
nn

dx
(l) = 0,

and



d2er
nn

dx2
(x)− α2 er

nn(x) = 0,

der
nn

dx
(0) = 0,

der
nn

dx
(l) = 1,

where parameter α is defined as

α =
√

3 (1− c) Σ.
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Figure 4: Auxilliary functions elnn(x), eldd(x) and eldn(x), for l = 1 and α = 1

Solutions to these problems can be calculated analytically, and are linked by
symmetry relations. Figure 4 show a plot of el

nn in order to help visualize its
behaviour.

el
nn(x) = −e

−αx (e2αx + e2α l
)

α e2α l − α and er
nn(x) = −el

nn(l − x). (13)

Finally, any subdomain Di can be mapped to D1 using translation ti, which
allows following the same line of reasoning to obtain:

δ = −
N∑
i=1

χi
[
f ′(xi−1) el

nn + f ′(xi) e
r
nn

]
◦ ti, (14)

where χi denotes the indicator function for subdomain Di.

3.3.2. Step 2: Dirichlet diffusion problem

We now consider the Dirichlet Diffusion problem (12) as a perturbation of
DSA, and define error

ε = f − h,

which follows equation 
−1

3Σ
ε′′(x) + (1− c) Σ ε(x) = 0,

ε′(0) = ε′(L) = 0,

ε(xi) = εi, 1 6 i 6 N − 1.

In the equation above, the value at subdomain interfaces is given by

εi = h(xi)− f(xi) =
1

2

[
g−(xi) + g+(xi)

]
− f(xi) =

1

2

[
δ−(xi) + δ+(xi)

]
.

14



Equation (14) yields

δ−(xi) = −f ′(xi−1) el
nn(l)− f ′(xi) er

nn(l),

δ+(xi) = −f ′(xi) el
nn(0)− f ′(xi+1) er

nn(0),

and, noticing that terms evaluated at point xi vanish thanks to symmetry rela-
tion (13),

εi =
1

2

[
f ′(xi+1)− f ′(xi−1)

]
el
nn(l). (15)

Following the same line of reasoning than for the Neumann diffusion problem,
in each internal subdomain Di, 2 6 i 6 N − 1, error ε|Di

can be expressed as
the linear combination

ε|Di
=
[
εi−1 e

l
dd + εi e

r
dd

]
◦ ti, (16)

where el
dd and er

dd respectively measure errors stemming from not knowing the
value h should take at the left and right extremities of the subdomain:

d2el
dd

dx2
(x)− α2 el

dd(x) = 0,

el
dd(0) = 1,

el
dd(l) = 0,

and


d2er

dd

dx2
(x)− α2 er

dd(x) = 0,

el
dd(0) = 0,

el
dd(l) = 1.

As for the Neumann Diffusion problem, the solutions to these problems can
be expressed analytically, and are linked by symmetry relations (cf Fig. 4):

el
dd(x) = −e

−αx (e2αx − e2α l
)

e2α l − 1
and er

dd(x) = el
dd(l − x).

Boundary subdomains D1 and DN must be handled specially, since they have
mixed boundary conditions: on one of their extremities, the boundary condition
is known exactly; the error only comes from not knowing the exact boundary
condition on the other extremity. We can write

ε|D1
= ε1 e

r
nd and ε|DN

= εN−1 e
l
dn ◦ tN , (17)

where el
dn and er

nd are given by

d2el
dn

dx2
(x)− α2 el

dn(x) = 0,

el
dn(0) = 1,

del
dn

dx
(l) = 0,

and



d2er
nd

dx2
(x)− α2 er

nd(x) = 0,

der
nd

dx
(0) = 0,

er
nd(l) = 1.
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As in previous cases, analytical and symmetric expressions can be found for
these terms, of which Figure 4 shows a plot:

el
dn(x) =

e−αx
(
e2αx + e2α l

)
e2α l + 1

and er
nd(x) = el

dn(l − x).

It may be interesting to note here that el
nn and el

dn are identical functions,
aside from a scaling factor, which tends to −α in the thick limit (when l→∞):

el
dn(x) =

e−αx
(
e2αx + e2α l

)
e2α l + 1

= −e
−αx (e2αx + e2α l

)
α e2α l − α

α
(
1− e2α l

)
1 + e2α l

=
α
(
1− e2α l

)
1 + e2α l

el
dn(x).

3.3.3. Flux correction

After a PDSA iteration, the corrected scalar flux is given by

φpdsa = φsi + h = φsi + f + ε = ρdsa φ0 + ε.

Unlike in standard DSA, φ0 is not an eigenmode of the PDSA scheme. It is
therefore more difficult to express error evolutions from one iteration to the
next. It is however possible to state that

‖φpdsa‖2
‖φ0‖2

6 ρdsa +
‖ε‖2
‖φ0‖2︸ ︷︷ ︸

ρmax
pdsa

, (18)

where ρmax
pdsa denotes the upper bound of the amplification factor of the whole

PDSA scheme.

Equations (16) and (17) yield

ε = χ1 ε1 e
r
nd +

N−1∑
i=2

χi
[
εi−1 e

l
dd + εi e

r
dd

]
◦ ti + χN εN−1 e

l
dn ◦ tN ,

and

‖ε‖22 = ε2
1 ‖er

nd‖22 +

N−1∑
i=2

∥∥εi−1 e
l
dd + εi e

r
dd

∥∥2

2
+ ε2

N−1

∥∥el
dn

∥∥2

2

6 ε2
1 ‖er

nd‖22 + 2

N−1∑
i=2

(
ε2
i−1

∥∥el
dd

∥∥2

2
+ ε2

i ‖er
dd‖22

)
+ ε2

N−1

∥∥el
dn

∥∥2

2

6 5
∥∥el

dd

∥∥2

2

N∑
i=1

ε2
i .
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The last inequality was obtained by noticing that ‖er
nd‖22 =

∥∥el
dn

∥∥2

2
6 3

∥∥el
dd

∥∥2

2

and
∥∥el

dd

∥∥2

2
= ‖er

dd‖22.

Equation (15) also allows us to bound the error at interfaces

|εi| 6
1

2

(
|f ′(xi+1)|+ |f ′(xi−1)|

) ∣∣el
nn(l)

∣∣
6
∣∣el

nn(l)
∣∣ sup

x
|f ′(x)|

6 |ρd|
∣∣el

nn(l)
∣∣ sup

x
|φ′0(x)|

6 |ρd|
k π

N l

∣∣el
nn(l)

∣∣ ,
so that

ε2
i 6 ρ2

d

(
k π

N l

)2 (
el
nn(l)

)2
.

Combining previous results yields the following global bound:

‖ε‖2 6
√

5 N ρd
k π

N l

∣∣el
nn(l)

∣∣ ‖el
dd‖2.

Noticing that, as soon as k 6= 0, ‖φ0‖2 =
√

L
2 =

√
N l
2 , it follows that

‖ε‖2
‖φ0‖2

6

√
2

N l

√
5 N ρd

k π

N l

∣∣el
nn(l)

∣∣ ‖el
dd‖2

6

√
10

3 (1− c) ρd ω︸ ︷︷ ︸
ρ̃d(ω)

α
∣∣el

nn(l)
∣∣ ‖el

dd‖2√
l︸ ︷︷ ︸

R

(19)

It should be mentioned that the first part of this expression, denoted by ρ̃d,
only depends on the scattering ratio c and the frequency ω. As shown by an
asymptotic development and illustrated in figure 5, in the asymptotic limit when
c→ 1, the maximum value of ρ̃d is approximately given by 1.26√

1−c .

On the other hand, the second part of expression (19), denoted by R, can
be expressed as

R(θ) =

√
2 e6 θ − 8 θ e4 θ − 2 e2 θ

θ e8 θ − 4 θ e6 θ + 6 θ e4 θ − 4 θ e2 θ + θ
,

where we defined the quantity

θ = α l =
√

3 (1− c) Σ L

N
,

17
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Figure 5: Evolution of factor ρ̃d with fre-
quency ω, for c = 0.99.
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Figure 6: Evolution of factor R with optical
thickness θ.

which is a dimensionless parameter depending only on the physical properties
associated to the problem, and characterizes the optical thickness of a subdo-
main. Figure 6 presents the variation of factor R with optical thickness θ. As
shown by asymptotic developments for small and large optical thicknesses, R
is not bounded for small optical thicknesses, but converges extremely rapidly
towards 0 when the optical thickness of the subdomains increases:

R(θ) ∼
θ→0

1√
3 θ

and R(θ) ∼
θ→∞

√
2 e−θ√
θ

.

3.3.4. Convergence

As a conclusion, for any set of cross sections Σ and Σs, there exists a critical
subdomain size l such that

∀l > l,
‖ε‖2
‖φ0‖2

< 1− ρdsa,

so that, from equation (18),

‖φpdsa‖2
‖φ0‖2

6 ρmax
pdsa < 1, (20)

and PDSA can accelerate the convergence of Source Iteration. Moreover, as the
subdomain size l increases above the critical size, the efficiency of PDSA rapidly
converges to that of standard DSA:

‖φpdsa‖2
‖φ0‖2

−−−→
l→∞

ρdsa.

Conversely, since ρ̃d −−−→
c→0

0, for any domain of fixed optical thickness

τ = ΣL, there exists a critical scattering ratio c̄ under which PDSA converges:

∀c 6 c̄,
‖φpdsa‖2
‖φ0‖2

6 ρmax
pdsa < 1.
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In practice, this limits the use of PDSA to cases which are optically thick
enough for condition (20) to apply for the whole geometrical domain. In such
cases, the condition also limits the maximal number of subdomains which can
be used.

3.3.5. Special case: two-subdomain partition

In the special case where the domain is partitioned in two subdomains, the
first Neumann diffusion step in PDSA yields, from equation (15) and boundary
conditions from problem (10):

ε1 =
1

2

[
f ′(0)− f ′(L)

]
el
nn(l) = 0.

It follows that the second PDSA step, Dirichlet diffusion, yields the solution to
the global DSA problem: h = f . In this case, PDSA is thus equivalent to a
global DSA scheme.

4. Numerical results

In order to assess the validity of the above theory, we present in this section
some numerical results.

These results were obtained using a very simple code, developed in Julia. We
consider the time-independent, one-group Boltzmann transport equation with
isotropic scattering, set in a homogeneous 1D slab geometry over the spatial
domain [0, L]. In order to model a full reactor core, we impose void boundary
conditions with zero incoming flux:

µ
∂ψ

∂x
(x, µ) + Σψ(x, µ) =

Σs

2

∫ 1

−1

ψ(x, µ′) dµ′ +Q(x),

ψ(0, µ) = 0 ∀µ > 0,

ψ(L, µ) = 0 ∀µ < 0.

The solver uses the discrete-ordinates method to handle the angular depen-
dency of the solution. The transport equation is spatially discretized using a
standard diamond-differencing (DD) scheme. The diffusion equations used in
the DSA and PDSA schemes are discretized using a P1 finite-element method.
Table 1 summarizes the main parameters used in the discretization.

In the following, we will set a unit-length domain (L = 1) and a linear
source (Q(x) = x). The cases studied will vary only with respect to the ma-
terial used in the geometry, which can be entirely characterized by its total
and scattering cross-sections Σ and Σs. Equivalently, the problem may be
characterized by its total optical thickness τ = ΣL and its absorption ratio
ε = 1− c = 1− Σs

Σ .
From the bounds discussed above, one may expect the PDSA scheme to

converge when the optical thickness of each domain τ
N is large enough and ε is

not too small.
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Parameter Value
Angular discretization

Method discrete ordinates
Angular quadrature 10 directions

Spatial discretization
Transport diamond-differencing
Acceleration P1 finite elements
Spatial mesh 1 000 meshes

Iteration control
Max. number of outer iterations 10 000
Stopping criterion Σs‖φ`+1 − φ`‖∞ < 10−5

Table 1: Discretization parameters for numerical tests

4.1. Fourier analysis

Setting an initial flux of the form given by (9) and performing an iteration,
one can perform a numerical Fourier analysis of the different schemes.

The results of such an analysis are presented in figure 7, in the case where
τ = 10 and ε = 0.1. Unsurprisingly, the Source Iteration and DSA schemes
behave similarly to figure 2. The behavior of PDSA is presented for differ-
ent numbers of subdomains. As noted in paragraph 3.3.5, PDSA with two
subdomains is exactly equivalent to standard DSA. Then, as the number of
subdomains increases, larger and larger perturbations start to appear until the
amplification factor exceeds 1 for 9 subdomains.

The dashed black line in figure 7 represents the theoretical bound on the am-
plification factor, as obtained using eqs. (18)–(19) in the case of 3 subdomains.
It appears that this value effectively bounds the measured amplification factor,
but is not very sharp.

However, such a problem being neither very optically thick nor very diffusive,
it is not representative of the cases where PDSA would be applied in practice
for PWR calculations. In order to show a behaviour when the optical thickness
increases, figure 8 presents the same analysis for τ = 30 and ε = 0.05. In this
case, both 2-domain and 3-domain PDSA are indistinguishable from standard
DSA, and amplification factors for other numbers of subdomains are reduced as
expected. The theoretical bound for PDSA(3) is still pessimistic, but stays in
more acceptable limits.

4.2. Number of iterations

The practical interest of PDSA can be assessed in terms of the reduction
in the number of iterations. Table 2 presents a comparison of the acceleration
schemes on different problems. An “X” marks settings in which DSA does not
converge.

The first two rows of the table (cases A and B) correspond to the two cases
used for the Fourier analysis in the previous section. In case A, we can see that,
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Figure 7: Measured amplification factors of various acceleration schemes, for the case where
τ = 10 and ε = 0.1 (case A in table 2).

τ ε SI DSA PDSA(3) PDSA(4) PDSA(6) PDSA(9)

A 10 0.100 144 24 24 24 24 X
B 30 0.050 342 27 27 27 27 27
C 30 0.010 1399 34 34 34 56 X
D 30 0.005 2248 35 36 36 X X
E 30 0.001 4351 38 X X X X

Table 2: Iteration count of the various schemes for several cases.

as expected, 9-domain PDSA does not converge in the first case. However,
although figure 7 showed rather degraded amplification factors for 6-domain
PDSA, its iteration count is in practice not higher than for the standard DSA.
Similar results occur for case B, in which all PDSA schemes exhibit no degrada-
tion of efficiency with respect to standard DSA. This is in contrast to figure 8,
which evidenced a degradation of the amplification factor for 9-domain PDSA.

Cases C–E demonstrate the behaviour of the iteration count as ε decreases.
Unsurprisingly, the number of source iterations increases with the scattering
ratio. This is in contrast with the rather stable DSA iteration count. The PDSA
schemes behave almost identically to DSA, until they reach a point where the
number of iterations starts increasing. The scheme stops converging soon after
this point.

This is more clearly shown on figure 9, which presents the variation of the
iteration count with the scattering ratio. Reading the figure from right to left:
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Figure 8: Measured amplification factors of various acceleration schemes, for τ = 30 and
ε = 0.05 (case B in table 2).

as the scattering ratio increases, the number of source iterations increases. At
the same time, the DSA iteration count stays more stable. PDSA behaves
identically to DSA, until the scattering ratio approaches a critical value, at
which its performance degrades very rapidly. This illustrates the existence of a
critical scattering ratio c̄, as mentioned in section 3.3.4.

The main conclusion to draw from this study is that, when it converges,
PDSA almost always exhibits the same performance as standard DSA. The
following part discusses the conditions under which PDSA does converge.

4.3. Convergence region

Figure 10 presents the convergence region of PDSA. For low scattering ratios
and high optical depths (in the top right part of the figure), PDSA converges.
Then, as the scattering ratio increases above the critical value c̄, the scheme
leaves the convergence region. On figure 10, dashed lines present the theoretical
critical scattering ratio. That is, the dashed lines are level curves for which
ρmax
pdsa = 1. On the other hand, solid lines present the critical point at which the

scheme is observed to start diverging in practice.
First, it is interesting to note that the theoretical value always bounds the

practical one. In other words, for a given number of subdomains, the dashed line
is always above the solid one. The overestimation of ρmax

pdsa, observed in figures 7
and 8, manifests itself as a gap between the theoretical and observed values. In
practice, theoretical bounds can help ensuring that PDSA will converge when
ρmax
pdsa < 1. However, if the theoretical bound goes above unity a practical
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Figure 9: Iteration count as a function of the scattering ratio, for τ = 30.

test should still be conducted, as PDSA might still very well converge. This is
especially true in the limit of large optical thicknesses, where the overestimation
of ρmax

pdsa appears to increase.

5. Conclusions

We presented in this paper a Piecewise Diffusion Synthetic Acceleration
scheme (PDSA), which is specifically designed to be straightforwardly used in
parallel contexts. The implementation of PDSA only requires having a stan-
dard neutron diffusion solver whose discretization is consistent with that of the
neutron transport solver. In practice, and as explained in [11], starting from an
initially sequential DSA-accelerated transport code, one only needs to take care
of the parallelization of the transport solver; the parallel acceleration scheme
comes at no practical development cost.

We showed that, although PDSA only approximates DSA, it converges for a
class of problems which are optically thick enough. For this class of problems,
we also showed that PDSA is in practice as efficient as standard DSA, in terms of
the number of iterations. We presented an indicator, coming from 1D geometries
but computable for any kind of 3D problem, allowing us to estimate a priori if
the problem at hand is optically thick enough for PDSA to converge.

The limited accuracy of this indicator is the main shortcoming of this work.
Simple 1D experiments show that PDSA performs in practice much better than
the indicator would predict. The work presented in [11] draws similar conclu-
sions for more complex, 3D, industrial calculations. In practice, the theoretical
indicator presented here can be used to guarantee that the method will con-
verge, but no practical conclusion can be drawn as to the divergence of the
scheme. This might be because the bounds derived here are not tight enough
to yield the sharp estimators that one would like to have in practice. Also, as
source iterations advance, we might expect the DSA correction to be smoother
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Figure 10: Boundary of the domain of convergence of PDSA: the scheme converges only for
parameters which are above the curves. Theoretical limits are indicated by dashed lines, while
solid lines indicate the experimentally measured limits.

and smoother, and the gradient of the correction to be closer and closer to zero.
This phenomenon has not been accounted for here, although it could help re-
duce the error made in the first PDSA step. This should be the topic of further
analyses and work. The applicability of these homogeneous, 1D results to the
more useful case of heterogeneous, multi-dimensional calculations should also
be investigated.
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