
Studying the numerical quality of an industrial
computing code: a case study on code aster

François Févotte? and Bruno Lathuilière

EDF R&D, département PERICLES, 7 bd Gaspard Monge, 91120 Palaiseau, France,
{francois.fevotte, bruno.lathuiliere}@edf.fr

Abstract. We present in this paper a process which is suitable for the
complete analysis of the numerical quality of a large industrial scientific
computing code. Random rounding, using the Verrou diagnostics tool,
is first used to evaluate the numerical stability, and locate the origin of
errors in the source code. Once a small code part is identified as unsta-
ble, it can be isolated and studied using higher precision computations
and interval arithmetic to compute guaranteed reference results. An al-
ternative implementation of this unstable algorithm is then proposed
and experimentally evaluated. Finally, error bounds are given for the
proposed algorithm, and the effectiveness of the proposed corrections is
assessed in the computing code.

Keywords: floating-point, numerical verification, random rounding

1 Introduction

EDF is France’s main electric utility. Like several other industries, its internal
processes rely heavily on numerical simulations, which are performed by Scien-
tific Computing Codes (SCC). To name only an example: numerous SCCs are
used to study the safety of nuclear power plants, or optimize their production.
It is therefore important that both EDF itself, but also others – like nuclear
safety authorities, have confidence in the results produced by these codes. To
this end, all SCCs undergo a Verification & Validation (V&V) process, during
which various sources of errors are evaluated:

– modeling errors, i.e. differences between “real life” and the mathematical
objects used to represent it;

– mathematical approximations, i.e. differences due to the simplification of
the mathematical problem (such as discretization for example) or to their
approximate resolution (for example using iterative processes);

– computation errors, due to the difference between the ideal manipulation of
real numbers, and actual computations performed by program running on a
CPU, which typically uses floating-point arithmetic as standardized by the
IEEE-754 norm [8].

? corresponding author

The first two sources of errors mentioned above have been studied for a long
time, as they were the more dominant terms. However, continual progress in
computational power over the last decades, as well as advances in numerical
methods, have made it possible to dramatically increase the complexity of mod-
els, while at the same time improving their resolution (for example through
refined discretizations). The impact of computing errors on results has therefore
recently become of non-negligible importance, and the analysis of floating-point
arithmetic is now a topic of interest for industry. However, as of today, the in-
troduction of adequate methodologies in industrial V&V processes still largely
remains to be done.

The main objective of the present paper is to describe a process which is suit-
able for the complete analysis of floating-point errors and numerical instabilities
in a large industrial code such as code aster.

Code aster [1] is an open source scientific computation code dedicated to the
simulation of structural mechanics and thermomechanics. It has been actively
developed since 1989, mainly by the R&D division of EDF. It uses finite ele-
ments to solve models coming from the continuum mechanics theory, and can be
used to perform simulations in a wide variety of physical fields such as mechan-
ics, thermal physics, acoustics, seismology. . . Code aster has a very large source
code base, with more than 1 200 000 lines of code, mostly written in 3 languages:
Fortran90 (' 60 %), C (' 20 %) and Python (' 20 %). It also uses numerous
third-party software, such as linear solvers or mesh manipulation tools. Its de-
velopment team has been dedicated to code quality for a long time, and has
accumulated several hundreds of test cases which are run frequently as part of
the V&V process.

Despite this, the development team of code aster has faced numerous non-
reproducibilities and other errors thought to be related to floating-point arith-
metic. The traditional methodology to identify and track such errors relied on
the analysis of the robustness of the code to changes in its input parameters.
Perturbing the mesh used in the discretization of the underlying Partial Differ-
ential Equations (PDEs) was a good way of performing such an analysis: results
of the computation should be unaffected by the numbering of meshes, or almost
unaffected by very small perturbations of the mesh nodes. Checking the robust-
ness of computed results to such changes would allow to uncover errors related
to numerical instabilities. The approach that we describe here is complementary:
we study the robustness of the code with respect to the underlying arithmetic
and perturbation of the computational process itself.

In the rest of this paper, we present a complete process allowing to study the
numerical quality of code aster, from evaluating its numerical stability (Sect. 2)
and finding the origin of instabilities in the source code (Sect. 3), to fixing
problems by proposing more stable algorithms (Sect. 4). The effectiveness of the
proposed correction is then assessed in Sect. 5, before we make a few concluding
notes in Sect. 6.

2 Checking for Numerical Instabilities with Verrou

Among the different techniques which can be used to evaluate numerical in-
stabilities and round-off errors, the wide family of methods revolving around
Monte-Carlo Arithmetic (MCA) [20] seems to be one of the most promising in
industrial contexts. For example, Discrete Stochastic Arithmetic, as implemented
in the CADNA library [9,11], has already been successfully used on large indus-
trial codes [12]. However, the need for a complete instrumentation of the source
code makes CADNA too costly a solution for it to be applied widely to industrial
codes. Even less demanding tools such as Verificarlo [3], which only requires a
re-compilation of all the source code (potentially including third-party libraries,
if one wants to analyze them), are too impractical to be applied routinely as
part of the V&V process of such a large code as code aster.

In order to avoid the need for an instrumentation of the program sources
or a recompilation, various tools aim at implementing numerical debugging in
the form of a Dynamic Binary Analysis (DBA), i.e. by directly analyzing the
executable binary program during its execution. For example, Craft HPC [10]
is a tool performing DBA in order to detect cancellation errors, and evenmore
optimize the use of single- and double-precision variables throughout the source
code to balance speed and accuracy. Among DBA tools, many make the choice
of leveraging the powerful DBA features of the Valgrind [13] platform. Such
solutions are more advantageous since Valgrind is already used by a large num-
ber of scientific code developers to help with memory debugging, and is thus
compatible with most computing codes.

FpDebug [2] is one of the earliest Valgrind-based floating-point analysis tools.
It makes use of the “shadow memory” feature of Valgrind to perform a high-
precision computation alongside the standard execution of the analyzed program.
A comparison between high and standard precision results is performed to detect
the occurrence of inaccuracies and, for each inaccuracy, to determine whether it
comes from input data or from the floating-point operation itself. Apart from its
very large overhead, mostly due to the use of shadow memory, the major prob-
lem preventing the use of FpDebug for industry-scale programs is the very large
size of the output it produces. This problem should be tackled by Herbgrind [17],
a promising tool which also uses shadow executions to detect floating-point in-
accuracies, but uses advanced techniques to precisely track the origin of such
errors in the source code. The Herbgrind output is therefore reduced to the set
of code fragments which lead to inaccuracies, in a suitable form for later analysis
with Herbie [16]. The large overhead induced by this in-depth analysis and the
use of shadow memory in Valgrind — currently of the order of ×10 to ×10 000
depending on the test case — makes the tool more suitable for the analysis of a
single unstable test case, once the presence of numerical instabilities has already
been uncovered (cf. Sect. 3).

2.1 Presentation of Verrou

The present work is based on Verrou [5,6], an open-source1 floating-point arith-
metic diagnostics tool developed by the R&D division of EDF. From the be-
ginning of its development, Verrou has targeted large industrial applications by
ensuring that basic diagnostics features can always work without recompiling
the analyzed program nor having access to its source code.

Like other Valgrind-based tools, a major advantage of Verrou is its simplicity
of use. When running a program, one only needs to add a prefix to the command
line in order to instrument it:

valgrind --tool=verrou --rounding-mode=random PROGRAM [ARGS]

When called in this way, Verrou makes use of the Dynamic Binary Analy-
sis (DBA) features of Valgrind to instrument the program (in binary form, as
it was produced by its standard industrial build process) and to replace each
floating-point instruction by a modified version which yields randomly rounded
results. Global results of the computations are thus output like in any normal
execution, except that they are affected by the cumulative effect of all randomly
rounded intermediate results. As such, Verrou implements a Random Rounding
Arithmetic (RRA), which might be seen either as a subset of MCA, or as a form
of asynchronous CESTAC method [21].

This makes it easy for Verrou to be introduced in an industrial V&V process:
as depicted in Fig. 1a, SCCs always have a non-regression test suite in which
numerous test-cases are run to produce results which are compared to references.
A tooling machinery often produces a nicely formatted synthesis of the results
in order for the developers to see at a glance whether a change introduced in the
code breaks something. Figure 1b presents how, by simply ensuring that test
cases are run within Verrou, their results can be perturbed using RRA. Such
results can then be compared as usual to references, in order to evaluate the
numerical stability of the analyzed computing code.

The overhead of Verrou is kept as low as possible by a careful implementation
of the various operations in directed rounding, limiting the number of random
number generations, and using fused multiply-add (FMA) instructions when the
hardware supports it. Overall, the slow-down factor for one execution of a given
program in Verrou with respect to native run times is usually measured between
×10 and ×20. The most extreme overheads that we have measured so far were
×8 (for a code spending much time in I/O operations) and ×40 (observed in
one test-case of an extremely well-optimized code). These factors then have to
be multiplied by the number of random rounding runs needed for triggering
anomalies; 3–5 is usually enough.

Verrou also provides more advanced features, such as the ability to limit
instrumentation to parts of the code (functions, or even source lines if the binary
was compiled using the “-g” switch).

1 Project page URL: http://github.com/edf-hpc/verrou

http://github.com/edf-hpc/verrou

Source files Executable
binary Results

Compiler Processor

Testing tools

Reference
results

✓ OK x KO
No regression

(a) Standard non-regression testing

Source files Executable
binary Results

Compiler Processor

V
e
rr

o
u

Perturbed

Numerical stability

Testing tools

Reference
results

✓ OK x KO

(b) Numerical verification with Verrou

Fig. 1: Schematic view of industrial verification processes

2.2 Preliminary Work

In order to check that the instrumentation process itself does not introduce
errors, it is interesting to perform a preliminary study. We work here on a subset
of 72 test cases, covering a wide range of features in code aster. We took care
to include in this selection some test cases known (or believed) to be unstable,
and some not known to be particularly unstable. For each of these test cases, we
check that:

– several standard runs of code aster yield reproducible results;
– several runs of code aster within Valgrind (memcheck) yield results which

are both reproducible and identical to the results of a standard run;
– several runs of code aster within Verrou in nearest mode yield results which

are both reproducible and identical to the results of a standard run.

This allows for an early detection of instrumentation problems, which could
otherwise invalidate the conclusions of further studies. For instance, the origin
of such problems include:

introspection: when part of the code examines its own execution (e.g. memory
consumption or elapsed times) to make choices, it is to be expected that
overheads induced by the instrumentation cause differences in results;

use of 80-bit instructions: the use of 80-bit instructions coming from the x87
set results in tricky non-reproducibilities, since intermediate results can be
either kept in 80-bits registers, or stored as 64-bit double-precision numbers
in memory. What actually takes place in the CPU can differ between native
executions, and executions within Valgrind;

use of non-default floating-point arithmetic, e.g. directed rounding, or spe-
cific floating-point exceptions. These might not be correctly taken into ac-
count by Valgrind/Verrou.

For code aster, these preliminary checks allowed to uncover a minor incom-
patibility between the instrumentation in Verrou and the dgemv routine from
the OpenBLAS library. Investigations are under way to determine whether this
behaviour is expected and understandable (i.e. this situation falls into one of the
three categories mentioned above), or whether it is a bug. In the latter case, this
could be either a bug in Verrou, such as an incorrect handling of some specific
instruction used in this routine, or a real instability in OpenBLAS.

In the meantime, this routine has been replaced (using the LD PRELOAD mech-
anism) by its equivalent from the Netlib implementation of the BLAS interface.
Hence, the stability problem is temporarily curbed so as to focus on the analysis
of code aster itself.

2.3 Numerical Verification Using Random Rounding

We now perform the numerical verification of code aster using random rounding
with Verrou. For the sake of brevity, although this analysis has been performed
on the 72 test cases mentioned above, Table 1 only presents the results for
a few test cases. Each test case is identified by its name in the first column.
The following 4 columns present the status of the run, as reported by the non-
regression testing tools, respectively for a run under Verrou in nearest rounding
mode, and 3 runs with Verrou in random rounding mode.

We present in the last column the number of significant (decimal) digits in
common between the results of the three random rounding runs. This number
is defined as

C(x) = log10

∣∣∣∣µ(x)

σ(x)

∣∣∣∣ ,
where, for a sample x = (x1, x2, . . . , xN), we denote by µ(x) its average, and
σ(x) its standard deviation. A star (*) denotes the fact that all digits output
by code aster were identical in the different runs in random rounding (i.e. in
such cases, we have σ(x) = 0 in the above formula, but do not know whether
this is due to results being “perfectly stable”, or code aster outputting too few
digits). The column contains several numbers, as each test case performs non-
regression testing on several results. For example, test case ssls108i outputs
two results, each one of them being compared to a reference value. For the first
one, the 3 random rounding runs produce values that have 11 decimal digits in
common. Likewise, values produced by the 3 random runs for the second result
have 10 decimal digits in common.

One (native) run of the test suite (72 test cases) takes around 10 minutes
to complete, and each random-rounding run of the test suite with Verrou takes
approximately 20 minutes. Therefore, the analysis presented here (one native
and 3 random rounding runs) takes approximately 70 minutes to complete. The
relatively low global overhead is explained by two factors:

– a large part of the test suite run time is spent in file-system manipulations
and other I/O operations ;

Table 1: Analysis of numerical instabilities with Random Rounding

Test Status # common digits
case nearest rnd1 rnd2 rnd3 C(rnd1, rnd2, rnd3)

ssls108i OK OK OK OK 11 10
ssls108j OK OK OK OK 10 10
ssls108k OK OK OK OK 11 10
ssls108l OK OK OK OK 10 9
sdnl112a OK KO KO KO 6 6 6 * 3 0
ssnp130a OK OK OK OK * * 10 10 10 10 9 * * * 9 9 9 9 * * 10
ssnp130b OK OK OK OK * * 11 11 * 12 9 * * * 9 9 9 9 9 9 * *
ssnp130c OK OK OK OK * 11 11 11 11 10 9 11 11 10 10 10 * 11
ssnp130d OK OK OK OK * 9 * * * 10 9 9 9 9 9 9 9 9 * 9 * * *

– the overhead of a random rounding run is relatively low, around ×10 on
average between test cases.

Over the 72 test cases used in this study, 3 exhibit an unstable behaviour
as shown for example by sdnl112a in T5able 1: such tests may fail in random
rounding mode and/or produce results that have very few significant digits in
common between random rounding runs (3 or less).

In the rest of this paper, we focus on the further analysis of test case sdnl112a.
Now that it has been shown to exhibit an unstable behaviour, the next logical
step consists in trying to locate the origin of these instabilities within the source
code, in order to correct them.

3 Locating the Origin of Numerical Errors in the Source
Code

Verrou provides different ways to locate the origin of numerical errors, adapted
to these different types of errors. A first technique, described in Sect. 3.1, allows
the identification of functions and source code lines which produce large changes
in the results when perturbed with random rounding. This is useful to locate the
source of numerical errors but, in some instances, such sources of errors produce
very small (and legitimate) inaccuracies, whose large impact on the final result
only comes from an unstable test occurring later during program execution. In
such instances, it is more appropriate to fix branching instabilities rather than
the source of round-off errors. Another technique, described in Sect. 3.2, allows
finding such unstable tests.

An interesting extension to the present study would consist in testing the
relevance of high-overhead / high-fidelity tools such as Herbgrind, since the scope
of the analysis at this stage is now reduced to one test case.

do 60 jvec = 1, nbvect
do 30 k = 1, neq

vectmp(k)=vect(k,jvec)
30 continue

if (prepos) call mrconl(’DIVI’, lmat, 0, ’R’, vectmp,1)
xsol(1,jvec)=xsol(1,jvec)+zr(jvalms-1+1)*vectmp(1)
do 50 ilig = 2, neq

kdeb=smdi(ilig-1)+1
kfin=smdi(ilig)-1
do 40 ki = kdeb, kfin

jcol=smhc(ki)

xsol(ilig,jvec)=xsol(ilig,jvec) + zr(jvalmi-1+ki) *&

vectmp(jcol)

xsol(jcol,jvec)=xsol(jcol,jvec) + zr(jvalms-1+ki) *&

vectmp(ilig)

40 continue

xsol(ilig,jvec)=xsol(ilig,jvec) + zr(jvalms+kfin) *&

vectmp(ilig)

50 continue
if (prepos) call mrconl(’DIVI’, lmat, 0, ’R’, xsol(1, jvec),&

1)
60 continue

Fig. 2: Excerpt from the source code of function mrmmvr, which performs the
product of a sparse matrix (whose non-zero coefficients are stored in array zr)
with multiple vectors (stored in array vect). Vectors resulting from these prod-
ucts are stored in array xsol. Highlighted source code lines are those detected
as unstable by the Delta-Debugging algorithm.

3.1 Delta-Debugging to locate round-off error sources

A first technique relies on Verrou’s ability to restrict the scope of random round-
ing perturbations to parts of the program: functions, and possibly source code
lines if the program was compiled with the right options (like gcc -g for in-
stance). Starting from a situation where perturbing the whole program produces
significant errors, this feature can be used to perform a binary search (based on
the Delta-Debugging (DD) algorithm [22]) that progressively reduces the scope
of instrumentation in order to eventually identify unstable portions of the source
code, whose perturbation produces large changes in the results [5].

Performing an analysis of test case sdnl112a using the Delta-Debugging tech-
nique takes approximately 2 h 20 min. Overall, the Delta-Debugging algorithm
tests 86 configurations (i.e. subsets of functions or lines which are perturbed). A
configuration is considered correct if 15 random rounding runs pass the test suite
criteria. Each random rounding run take approximately 10.3 s. to run (vs. 3.9 s.
for a nearest rounding run).

In a first stage, the search identifies one unstable function, named mrmmvr. In
a second stage, the Delta-Debugging search refines the localization and identifies
5 unstable lines, as shown in Fig. 2.

Although it might not be obvious at first sight, function mrmmvr performs
the product between a sparse matrix M and several vectors vk. Unstable lines

identified by the DD algorithm correspond to the dot products between each line
M [i, :] of the matrix and each vector vk[:]. Such errors can be fixed relatively
easily by introducing a compensated sum or dot product implementation. Nu-
merous details can be found in the literature (see for example [14] or [15]), so
we will not provide further details here.

3.2 Coverage analysis to locate unstable tests

An interesting side-effect of analyzing the binary is that Verrou is largely com-
patible with other forms of instrumentation based on source modification or
recompilation. This composability helps devising a second localization method-
ology, which allows finding unstable tests. The technique consists in performing
a coverage analysis of the test case in nearest rounding mode, and comparing it
to the same coverage analysis performed during a random rounding run. Such a
coverage analysis can be conducted using standard tools, such as using the gcov

utility from the gcc suite. An example output of coverage analysis is presented
in the left part of Fig. 3: the gcov tool produces annotated source files, where
each line is prefixed by the number of times it was executed during the run.
Dashes (-) indicate lines which do not contain executable code, and hashes (#)
mark lines which were never executed.

The right part of Fig. 3 presents results of a coverage analysis performed
in the same conditions, except that the program was perturbed with random
rounding using Verrou. Lines highlighted in the figure are those for which the
coverage count is different between the native run and the random rounding run.
This identifies unstable tests, which led to different branches being taken.

This technique is much faster than the Delta-Debugging method presented
above, since it only needs a few runs of the program: one standard run in nearest
rounding mode, and as few random rounding runs as necessary to trigger insta-
bilities (ideally only one, as it is the case here). A small additional overhead is
due to the gcov instrumentation but, overall, the analysis of unstable tests in
case sdnl112a takes less than a minute to complete.

Three unstable tests were found this way in code aster, including the function
illustrated in Fig. 3, on which we will focus in the rest of this paper. A quick
inspection shows that the incriminated function aims at computing

f(a, b) =

∣∣∣∣∣a if a = b,

b−a
log(b)−log(a) otherwise,

(1)

which is a continuous function in real arithmetic, but whose current implemen-
tation in Fortran exhibits (not too unsurprisingly) unstable behavior in floating-
point arithmetic. Our next step should then be to transform this formula into
another expression, more stable when evaluated in floating-point arithmetic.
Since the implementation presented in Fig. 3 uses the IEEE-754 binary64 [8]
format for all relevant variables (declared using real(kind=8) in Fortran), we
will focus on this precision. The rest of this paper will therefore consistently use
double-precision floating-point arithmetic, and define the relative rounding error
as u = 2−53.

120:subroutine fun1(area, a1, a2, n)
-: implicit none
-: integer :: n
-: real(kind=8) :: area, a1, a2

120: if (a1 .eq. a2) then

13: area = a1

-: else

107: if (n .lt. 2) then

107: area = (a2-a1) / (log(a2)-log(a1))

###: else if (n .eq.2) then
###: area = sqrt (a1*a2)

-: else
###: ! ...

-: endif
-: endif

120:end subroutine

120:subroutine fun1(area, a1,...
-: implicit none
-: integer :: n
-: real(kind=8) :: area,...

120: if (a1 .eq. a2) then

4: area = a1

-: else

116: if (n .lt. 2) then

116: area = (a2-a1...

###: else if (n .eq.2)...
###: area = sqrt (...

-: else
###: ! ...

-: endif
-: endif

120:end subroutine

Fig. 3: Instability detection using code coverage diagnostic tools: results of a
standard coverage diagnostic (left), compared to a coverage diagnostic perturbed
with random rounding using Verrou (right). Highlighted source code lines are
those for which the count of occurrences is different in both executions.

4 Fixing Floating-Point Instabilities

Instabilities such as the one uncovered here can quickly be studied by develop-
ing a small stand-alone application performing only the calculation of f(a, b).
Since the scope of the analysis is now reduced to a single code fragment, the
field of applicable tools considerably widens. For example, one approach could
consist in performing a static analysis of the code. However, all we interested
in here is fixing the expression, which exactly what the Herbie tool [16] was
designed to do. Herbie aims at providing more accurate replacements for ex-
pressions which are inaccurately evaluated in floating-point arithmetic. It does
so by evaluating the input expression on a sample of all parameters in order
to assess its accuracy by comparison between standard precision floating-point
arithmetic and higher-precision arithmetic. Multiple transformations are then
tested on the input expression in order to generate replacements, which are in
turn evaluated to check whether they are more accurate than the initial one.
Herbie tries by default to generate an expression that maximizes the average
floating-point accuracy over the whole set of samples.

Unfortunately, in our case, expression (1) is very accurate almost every-
where in the space of parameters. The only inaccuracies occur when a and b are
very close, which leads to a catastrophic cancellation between the logarithms
in the denominator. Even increasing the number of points sampled by Herbie
(100 000 points instead of the default 256), the subset of values for which a is
close enough to b to cause error is not sampled. Therefore, even if we tell Herbie
to optimize the worst case accuracy, the error is underestimated and no useful
replacement is proposed. In [16], Herbie authors mention the need for a sam-
pling of millions of points in order to correctly evaluate the worst-case accuracy
of expressions with more than one argument.

Fig. 4: Relative errors on f(a, b), as computed in floating-point arithmetic using
the initial implementation found in code aster, and the corrected implementation
proposed in this work

Algorithm 1: Floating-point implementation of the proposed formula

Data: a, b
Result: p ' f(a, b)

1 c← b� a ;
2 n← c	 1 ;

3 if |n| ≤ 5u then
4 p← a ;

5 else
6 l← round(log(c)) ;
7 f ← n� l ;
8 p← a⊗ f ;

9 end

4.1 Experimental analysis of the Instability

Therefore, we revert to a by-hand, experimental analysis of expression (1). Ex-
tracting the value used when running the test case, one can let b vary in a small
floating-point interval around a, for example of radius 600 u, and study the er-
rors made when computing f(a, b) using an implementation similar to the one
used in code aster. In our case, we take

a = 4.2080034963016440× 10−5 and b ∈
[
a (1− 600 u), a (1 + 600 u)

]
.

One can choose any language to perform such an analysis, as the underlying
floating-point arithmetic will always be the same. For the present study, we
chose to use Julia, which has the advantage of proposing an easy-to-use interval
arithmetics library: ValidatedNumerics [18]. This library makes it very easy to
compute precise values of f(a, b), to be used as reference when evaluating errors
produced by the tested implementation. More precisely, reference results in this
study have been produced using an interval arithmetic based on an underlying
112-bit floating-point arithmetic. We can check a posteriori that both extremities
of the resulting interval are rounded to the same double-precision floating-point
value, which ensures that the 112-bit precision is enough to compute an accurate
approximation of the real result. This value is then used as a reference to compute
the relative error of the floating-point evaluation of f(a, b).

As illustrated by the red square markers in Fig. 4, the initial implementation
in code aster produces very large relative errors, sometimes higher than 60 %.
With such an implementation, evaluating f(a, b) when b is very close to a (a few
ulps) even produces infinite or NaN values.

4.2 Proposed Solution

In order to devise an alternative formulation of expression (1), equivalent in
terms of real calculations but more stable with floating-point arithmetic, we
need to make sure to avoid any catastrophic cancellation in the denominator. We
therefore propose in this work to use the following re-definition of the function:

f(a, b) =

∣∣∣∣∣∣
a if a = b,

a
b
a−1

log(b
a)

otherwise.
(2)

Furthermore, in order to evaluate this expression using a binary floating-point
arithmetic, we propose to implement it using Alg. 1. In this algorithm, we denote
by ⊕, 	, ⊗ and � the rounded-to-nearest floating-point versions of the basic
operations. Notice that the test in Alg. 1 has been enlarged, so that future
analyses using techniques like the one described in paragraph 3 are less likely to
detect a (now hopefully fixed) unstable test.

The quality of this algorithm can be evaluated using the methodology pre-
sented in the previous section. Results shown by the blue x-shaped markers in
Fig. 4 clearly illustrate the improvement brought by the use of the proposed
algorithm: relative errors drop from the [10−5, 10−1] range, down to 3 ulps.

4.3 Proof

In an industrial context, the previous study would probably be enough to validate
the proposed formula: most engineers would accept such experimental results are
a sufficient “guarantee” that the proposed expression is correct.

Nevertheless, for the sake of completeness, we present here a mathematical
proof that the proposed formula actually provides good accuracy in all cases.
Even if we depart from the pragmatic, industrial approach, such a proof will at
least have a pedagogical interest, in that it gives a better understanding of why
the proposed correction improves overall accuracy.

Theorem 1. Let a and b be two floating point numbers. Then, assuming that
no denormalized numbers appear during calculations, the operations described in
Alg. 1 produce a result close to f(a, b), with a relative error bounded in the first
order by 10 ulps.

We assume in this proof that no overflow occurs. If we define

x =
b

a
,

then we have

c = x (1 + εc), (3)

where εc is a relative error smaller than machine precision: |εc| ≤ u.

In the following, we will adhere to the convention that all relative round-off
errors are denoted by εv, where v is the name of the variable storing the result
of the operation, as defined in Alg. 1. The proof is presented in its entirety in
Appendix A, and we only give a sketch of it here. We start by defining two
sub-cases, corresponding to the branches of the test.

Case 1: a almost equal to b. This case corresponds to lines 3–4 in Alg. 1.
The full proof for this case is presented in Appendix A.1. It relies on the fact
that, since 1 − x is the beginning of the Taylor development of log(x) in 1, the
approximation

x− 1

log(x)
' 1

is accurate when x ' 1.

Case 2: a “far from” b. This case corresponds to lines 5–8 in Alg. 1. Starting
from (3) and following the next statements in the algorithm, we have

n = (c− 1) (1 + εn) , (4)

l = log(c) (1 + εl) , (5)

f =
n

l
(1 + εf)

=
c− 1

log(c)

(1 + εn)(1 + εf)

1 + εl
, (6)

p = a f (1 + εp)

= a
c− 1

log(c)

(1 + εn) (1 + εf) (1 + εp)

1 + εl

= a
x− 1

log(x)

c− 1

x− 1

log(x)

log(c)︸ ︷︷ ︸
E1

(1 + εn) (1 + εf) (1 + εp)

1 + εl︸ ︷︷ ︸
E2

. (7)

We obtain in (7) that p is an approximation of the desired quantity, with a
relative error given by e = E1E2 − 1. While it is clear that E2 is bounded and
close to unity, a more thorough analysis of E1 needs to be performed.

Indeed, when x and c are close to 1, all four terms appearing in E1 are small,
and it is not clear that E1 can be bounded. We will thus define two sub-cases:
x ∈

[
1
2 , 2
]

and x /∈
[
1
2 , 2
]
.

Case 2a: x /∈
[
1
2
, 2
]
. This case is rather straightforward, since all terms are far

enough from 0 for relative errors to stay bounded. Appendix A.2 presents the
proof for this case, partly automatized with the Gappa proof assistant [4].

Case 2b: x ∈
[
1
2
, 2
]
. This case is maybe the most interesting one, as it explains

why the proposed expression is more stable than the initial one. The idea here
is that, since 1−x is the beginning of the Taylor development of log(x) in 1, the
function x−1

log(x) can not get too close to 0 in the considered interval. Moreover,

its derivative can be bounded, so that the small error between x and c can not
have too catastrophic consequences.

5 Checking the effectiveness of corrections

We can finally re-assess the numerical stability of code aster in order to check
the effectiveness of the corrections made so far.

Before using Verrou and following the protocol of Sect. 2, an important ques-
tion which arises at this stage is the validity of Random Rounding Arithmetic to
assess compensated algorithms such as the ones introduced to fix the problem
detected in Sect. 3.1. Indeed, such algorithms were designed to work in nearest

Table 2: Analysis of numerical instabilities of test-case sdnl112a

Status # common digits
Version nearest rnd1 rnd2 rnd3 C(rnd1, rnd2, rnd3)

Before correction OK KO KO KO 6 6 6 * 3 0
After correction OK KO OK OK 9 10 8 * 5 0

rounding mode, and could very well be incompatible with directed or random
rounding. Pioneering work has been performed on this topic in [7], which shows
that compensated summations and dot products will indeed work with random
rounding. However, a broader study of various kinds of algorithms still needs to
be performed.

Table 2 presents the results of a re-assessment of the numerical stability
of test-case sdnl112a. The first line in this table comes from the initial tests
presented in Table 1; the second line corresponds to the same test performed
on the version of code aster in which the instabilities uncovered in Sect. 3 were
fixed.

We can observe that two random rounding runs now pass, and the test sta-
bility has been improved by 2 to 4 decimal digits depending on the result. The
6th result has no digit in common between random-rounding runs because it is
expected to be close to 0 (and the test suite uses an absolute error to validate
it, so this result is not alarming). However, the corrected version still fails the
test in one random rounding run. Investigations show that this is because of
the 5th result, which is not surprising since the numerical stability of this result
is still relatively low, with only 5 decimal digits in common between random
rounding runs. This means that some work still needs to be done in order to
correct inaccuracies in this test case.

6 Conclusion and Perspectives

We have presented in this paper a complete workflow for the analysis and im-
provement of the numerical quality of a large industrial code, as exemplified
by code aster. An important conclusion to get from this work is that such an
analysis, which would probably have been out of reach a few years ago, is now
feasible. This paves the way for tighter integration of numerical verification tools
within industrial Verification and Validation processes.

This work also illustrates the wide variety of techniques which can be used
to perform such an analysis, and the complementarity between them:

– Random Rounding Arithmetic (RRA), as implemented in Verrou, has suc-
cessfully helped to bring out the numerical instabilities in code aster, and to
locate their origin in the source code;

– compensated algorithms have allowed increasing the accuracy of large dot
products in the code;

– higher precision computations (whose correctness can be guaranteed ny In-
terval Arithmetic) have allowed to experimentally analyze an inaccurate ex-
pression and check the validity of the proposed reformulation;

– a mathematical proof has confirmed this validity over the whole range of
arguments, while giving bounds on the produced error;

– RRA can again be used to assess the effectiveness of the corrections applied
to code aster.

Nevertheless, more work still needs to be carried out on such topics. Several
sources of errors have been detected in the study, but we further studied and
proposed corrections for only two of them. A straightforward extension would
be to try and correct other errors to further improve the overall stability of
code aster and make all its test cases reproducible and portable across architec-
tures. Also, steps involving the precise localization of errors and the proposition
of corrections could be further streamlined, either in Verrou or in tools like
Herbgrind (localization) and Herbie (correction).

References

1. Code Aster: Structures and thermomechanics analysis for studies and research.
http://www.code-aster.org/

2. Benz, F., Hildebrandt, A., Hack, S.: A dynamic program analysis to find floating-
point accuracy problems. In: 33rd ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI). pp. 453–462. ACM, New York, NY,
USA (Jun 2012)

3. Denis, C., de Oliveira Castro, P., Petit, E.: Verificarlo: checking floating point
accuracy through Monte Carlo Arithmetic. In: 23rd IEEE Internatinal Symposium
on Computer Arithmetic (ARITH’23) (2016)

4. de Dinechin, F., Lauter, C., Melquiond, G.: Certifying the floating-point implemen-
tation of an elementary function using Gappa. IEEE Transactions on Computers
60(2) (2011)

5. Févotte, F., Lathuilière, B.: VERROU: Assessing Floating-Point Accuracy Without
Recompiling (Oct 2016), https://hal.archives-ouvertes.fr/hal-01383417

6. Févotte, F., Lathuilière, B.: VERROU: a CESTAC evaluation without recompila-
tion. In: International Symposium on Scientific Computing, Computer Arithmetics
and Verified Numerics (SCAN). Uppsala, Sweden (Sep 2016)

7. Graillat, S., Jézéquel, F., Picot, R.: Numerical Validation of Compensated Algo-
rithms with Stochastic Arithmetic (Sep 2016), https://hal.archives-ouvertes.
fr/hal-01367769

8. IEEE Standard for Floating-Point Arithmetic. IEEE Std 754-2008 pp. 1–70 (2008)
9. Jézéquel, F., Chesneaux, J.M., Lamotte, J.L.: A new version of the CADNA library

for estimating round-off error propagation in Fortran programs. Computer Physics
Communications 181(11), 1927–1928 (2010)

10. Lam, M.O., Hollingsworth, J.K., Stewart, G.: Dynamic floating-point cancellation
detection. Parallel Computing 39(3), 146–155 (2013)

11. Lamotte, J.L., Chesneaux, J.M., Jézéquel, F.: CADNA C: A version of CADNA
for use with C or C++ programs. Computer Physics Communications 181(11),
1925–1926 (2010)

https://hal.archives-ouvertes.fr/hal-01383417
https://hal.archives-ouvertes.fr/hal-01367769
https://hal.archives-ouvertes.fr/hal-01367769

12. Montan, S.: Sur la validation numérique des codes de calcul industriels. Ph.D.
thesis, Université Pierre et Marie Curie (Paris 6), France (2013), in French

13. Nethercote, N., Seward, J.: Valgrind: A framework for heavyweight dynamic binary
instrumentation. In: ACM SIGPLAN 2007 Conference on Programming Language
Design and Implementation (PLDI) (2007)

14. Neumaier, A.: Rundungsfehleranalyse einiger verfahren zur summation endlicher
summen. ZAMM (Zeitschrift für Angewandte Mathematik und Mechanik) 54, 39–
51 (1974)

15. Ogita, T., Rump, S.M., Oishi, S.: Accurate sum and dot product. SIAM J. Sci.
Comput. 26 (2005)

16. Panchekha, P., Sanchez-Stern, A., Wilcox, J.R., Tatloc, Z.: Automatically improv-
ing accuracy for floating point expressions. In: ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI ’15). Portland, Ore-
gon, USA (Jun 2015)

17. Sanchez-Stern, A., Panchekha, P., Lerner, S., Tatlock, Z.: Finding root causes of
floating point error with herbgrind, arXiv:1705.10416v1 [cs.PL]

18. Sanders, D.P., Benet, L., Kryukov, N.: The julia package ValidatedNumerics.jl

and its application to the rigorous characterization of open billiard models. In: In-
ternational Symposium on Scientific Computing, Computer Arithmetics and Ver-
ified Numerics (SCAN). Uppsala, Sweden (Sep 2016)

19. Sterbenz, P.H.: Floating Point Computation. Prentice-Hall, Englewood Cliffs, NJ
(1974)

20. Stott Parker, D.: Monte Carlo arithmetic: exploiting randomness in floating-point
arithmetic. Tech. Rep. CSD-970002, University of California, Los Angeles (1997)

21. Vignes, J.: A stochastic arithmetic for reliable scientific computation. Mathematics
and Computers in Simulation 35, 233–261 (1993)

22. Zeller, A.: Why Programs Fail. Morgan Kaufmann, Boston, second edn. (2009)

A Complete proof

A.1 Case 1: a almost equal to b

We treat in a first step the case where the condition in the “if” statement at
line 3 of Alg. 1 applies. In this case, a and b are close enough to one another
for Sterbenz lemma [19] to hold, which means that no additional error is made
when computing n:

n = c− 1 = x (1 + εc)− 1.

The condition tested at the beginning of Alg. 1 therefore implies that:

1− 5 u

1 + u
≤ x ≤ 1 + 5 u

1− u
,

and

−6 u

1 + u
≤ x− 1 ≤ 6 u

1− u
. (8)

The algorithm returns a in this case, instead of the exact value

f(a, b) = a
x− 1

log(x)
,

so that the relative error is given by:

e0 =
a− f(a, b)

f(a, b)

=
log(x)

x− 1
− 1

=
log(1 + ε)

ε
− 1 (where ε = x− 1)

=
1

ε

(∞∑
n=0

(−1)n εn+1

n+ 1

)
− 1 (Taylor expansion of the log function)

=

∞∑
n=1

(−1)n εn

n+ 1
. (9)

Assuming ε ≥ 0, we have

∀n ∈ N,
εn

n+ 1
>

εn+1

n+ 2
,

so that grouping terms in pairs in (9) yields

e0 = −
∞∑
k=1

[
ε2k−1

2k
− ε2k

2k + 1

]
≤ 0

and

e0 = − ε
2

+

∞∑
k=1

[
ε2k

2k + 1
− ε2k+1

2k + 2

]
≥ − ε

2
.

The case where ε < 0 is treated similarly, so that we get

|e0| ≤
|ε|
2
≤ 3 u

1− u
,

where we injected (8) in the last inequality. This last result shows that in this
case, the relative error is bound by 3 ulps in the first order.

A.2 Case 2a: x /∈
[
1
2
, 2
]

We assume in this case that x /∈
[
1
2 , 2
]
, and will focus on the sub-case where

x > 2 (the other subcase, x < 1
2 , can be handled in a similar way).

Starting from (3), and knowing that the logarithm is a monotonically in-
creasing function, we have:

log(c) = log(x (1 + εc)) = log(x) + log(1 + εc),

=⇒ | log(c)− log(x)| ≤ log(1 + u) ≤ u,

where the last inequality was obtained by noting that the logarithm is convex,
and its derivative in 1 is 1. A rather simple Gappa script, presented in Fig. 5 can
prove the rest. In this script, all capital letters are ideal, real values corresponding
to the approximations computed in Alg. 1 and represented by lower-case letters.
We denote LX = log(x), and LE = log(c) − log(x). The bound on LE used as
hypothesis comes from the simple computation above, the bound on LX are those
of the logarithm over the range of double-precision floating-point numbers. Other
bounds come from double-precision floating-point limits.

Gappa can prove that the relative error produced by Alg 1 in this case is
bounded by approximately 8.9 × 10−16, which is compatible with the bounds
stated in Theorem 1. It should be noted however that Gappa can’t validate this
script for too small values of a, probably denoting a problem with denormalized
values.

a and b are double-precision floating-point values

@rnd = float<ieee 64, ne>;
a = rnd(A);
b = rnd(B);

Real computation (log(X) = LX)
X = b / a;
F = (X - 1) / (LX + 0);
P = a * F;

FP computation (log(c) = LX + LE)
c = rnd(X);
n rnd= c - 1;
l rnd= LX + LE;
f rnd= n / l;
p rnd= a * f;

{
Hypotheses
(a in [1b-1000, 1.8e308] # upper bound coming from
/\ X in [2, 1.8e308] # binary64 limits
/\ LX in [0.5, 710]
/\ |LE| <= 1b-53)

Conclusion
-> p -/ P in ?
}

Results:
p -/ P in [-1152921504606846483b-110 {-8.88178e-16, -2^(-50)},

1152921504606846483b-110 { 8.88178e-16, 2^(-50)}]

Fig. 5: Gappa script used to prove case 2a

A.3 Case 2b: x ∈
[
1
2
, 2
]

We finally study here the case when a and b are close to one another: x ∈
[
1
2 , 2
]
.

Let us define

g(x) =
log(x)

x− 1
,

so that, recalling the expression of E1 from (7),

E1 =
g(x)

g(c)
=

g(x)

g(x+ x εc)
.

We have:

|g(x+ x εc)− g(x)| ≤ x |εc| sup
y∈[x,x+x εc]

|g′(y)|

≤ x |εc| sup
y∈[1−u

2 ,2+2u]

|g′(y)|

≤ 0.6 |εc|,

where the last inequality was obtained by noticing that

∀y ∈
[

1− u

2
, 2 + 2u

]
, g′(y) ∈ [−0.3,−0.1],

as shown by a simple interval analysis. A similar interval analysis shows that

∀y ∈
[

1

2
, 2

]
, g(y) ≥ 1

2
,

so that ∣∣∣∣g(x+ x εc)− g(x)

g(x)

∣∣∣∣ ≤ 1.2 |εc|,

and thus, recalling the expression of E1 from (7),

1

1 + 1.2 |εc|
≤ E1 ≤

1

1− 1.2 |εc|
.

Putting all previous results together, we therefore have

(1− u)
3

(1 + 1.2 u) (1 + u)
≤ 1 + e ≤ (1 + u)

3

(1− 1.2 u) (1− u)
,

which proves that, in the first order, the relative error in this case is bounded
by 6 ulps. It is interesting to note here that, depending on the specific floating-
point implementation of the logarithm, l might not be correctly rounded and
error term εl might be bounded by several ulps. Should this happen, the relative
error on the result of Alg. 1 would be higher, but still bounded.

	Studying the numerical quality of an industrial computing code: a case study on code_aster

