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ABSTRACT

The large increase in computing power over the past few years now makes it possible to consider develop-
ing 3D full-core heterogeneous deterministic neutron transport solvers for reference calculations. Among
all approaches presented in the literature, the method first introduced in [1] seems very promising. It
consists in iterating over resolutions of 2D and 1D MOC problems by taking advantage of prismatic
geometries without introducing approximations of a low order operator such as diffusion. However, be-
fore developing a solver with all industrial options at EDF, several points needed to be clarified. In this
work, we first prove the convergence of this iterative process, under some assumptions. We then present
our high-performance, parallel implementation of this algorithm in the MICADO solver. Benchmarking
the solver against the Takeda case shows that the 2D–1D coupling algorithm does not seem to affect
the spatial convergence order of the MOC solver. As for performance issues, our study shows that even
though the data distribution is suited to the 2D solver part, the efficiency of the 1D part is sufficient to
ensure a good parallel efficiency of the global algorithm. After this study, the main remaining difficulty
implementation-wise is about the memory requirement of a vector used for initialization. An efficient
acceleration operator will also need to be developed.

Key Words: 3D heterogeneous transport; 2D–1D coupling algorithm; method of characteristics; prismatic

geometries; MICADO; parallel algorithm.

1. INTRODUCTION

The large increase in computing power over the past few years now makes it possible to consider developing
3D full-core heterogeneous deterministic neutron transport solvers for reference calculations. The method
of characteristics (MOC) [2] is very popular in 2D as it can easily deal with complex geometries. However,
for 3D problems the method of characteristics is still too expensive to run computations on whole core
geometries due to the huge amount of memory requirement and/or computation time needed. As reported in
[3], many studies have been published on these issues. A first approach [4] consists in reducing the amount
of memory by increasing the polynomial order of the source approximation, which allows reducing the
number of mesh cells in the spatial discretization. Other studies [5] have shown that memory requirements
for the ray tracing could be optimized in lattice geometries consisting of a large number of basic geometric
patterns. Finally, most reactor core geometries are prismatic, which allows computing 3D tracks inline and
reducing the required storage to relatively small 2D tracking data [6]. All these methods mainly address the
issue of memory requirement for a 3D MOC.

An other approach consists in avoiding direct 3D MOC computations by using a set of 2D MOC solvers
fed by axial leakage source terms. These kinds of methods are called Fusion Method or 2D–1D coupling
method. In code DeCART, axial leakage is computed by a global 3D CMFD diffusion problem [7–9] or by
an SPN solver [10]. In the CHAPELET-3D [11], CRX [12,13] and AGENT [14] codes, after an homoge-
nization at the scale of a pin (Fuel and moderator) 1D computation (Finite Difference, Nodal Expansion or
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MOC) are performed to compute the leakage. However, all these methods introduce approximations, either
by using a diffusion equation or by homogenizing cross sections. With the method described in [1] under
the name New formulation of the 2D/1D method, axial leakage sources are computed with a 1D MOC solver
without homogenization. As this method does not require diffusion nor simplified transport approxima-
tions, we think it is very promising for reference calculations and aim at assessing in this work the potential
benefits and drawbacks of such a method in an industrial setting.

After providing a description of the method, this paper addresses in particular three main concerns: do the
coupled 2D–1D iterations converge? Does the 2D–1D coupling affect the spatial convergence order of the
MOC? Finally, can this method be efficiently implemented in parallel? All numerical results are based on the
MICADO solver (Modern parallel Implementation of transport equation resolution based on Characteristic
And Discrete Ordinate) developed at EDF in order to perform reference calculations.

2. THE 2D–1D ITERATIVE COUPLING METHOD

2.1. Construction of the 2D–1D iterative system

After discretization of the energetic and angular variables in the neutron transport problem, the spatial equa-
tion left to solve can be written as:

ε
∂ψ

∂x
(x, y, z) + η

∂ψ

∂y
(x, y, z) + µ

∂ψ

∂z
(x, y, z) + Σψ(x, y, z) = Q(x, y, z), (1)

where ε, η, µ are the three components of direction Ω respectively along axes x, y and z. The angular flux
at a given point is denoted by ψ(x, y, z), Σ is the total macroscopic cross-section, and Q(x, y, z) represents
the source term including fission and scattering.

The radial and axial parts of this equation can be decoupled, which is especially interesting in cases where
the geometry is prismatic. This can be done by reformulating equation (1) as the following set of coupled
equations: 

ε
∂ψR
∂x

(x, y, z) + η
∂ψR
∂y

(x, y, z) + ΣψR(x, y, z) = Q(x, y, z)− µ∂ψZ
∂z

(x, y, z),

µ
∂ψZ
∂z

(x, y, z) + ΣψZ(x, y, z) = Q(x, y, z)− ε∂ψR
∂x

(x, y, z)− η∂ψR
∂y

(x, y, z),

ψR = ψZ .

(2a)

(2b)

(2c)

In the system above, ψR and ψZ are the unknowns of the new system, and all other notations are consistent
with equation (1). The first equation in this system is very similar to those proposed in [7–14]: for each
fixed value of z, equation (2a) can be seen as a standard 2D neutron transport problem of unknown ψR,
with a modified source term including axial leakage to couple planes. However, unlike most other codes,
axial leakage terms are evaluated using a 1D axial transport problem. Indeed, for each fixed position (x, y),
equation (2b) is a 1D transport ordinary differential equation of unknown ψZ , whose source term includes
radial leakage terms coming from ψR. The third equation (2c) ensures that both the 1D and 2D equations
are equivalent to the global 3D problem.

A natural step then consists in transforming the set of equations (2) into an iterative system (figure 1), in
which the 2D and 1D equations are solved in turn, and axial and radial leakage source terms are computed
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Figure 1. Alternating resolution on 2D slices and 1D columns

using the most recently computed values of ψZ and ψR respectively:
ε
∂ψR,n+1

∂x
(x, y, z) + η

∂ψR,n+1

∂y
(x, y, z) + ΣψR,n+1(x, y, z) = Q(x, y, z)− µ

∂ψZ,n
∂z

(x, y, z),

µ
∂ψZ,n+1

∂z
(x, y, z) + ΣψZ,n+1(x, y, z) = Q(x, y, z)− ε

∂ψR,n+1

∂x
(x, y, z)− η

∂ψR,n+1

∂y
(x, y, z),

(3a)

(3b)

where n is the iteration index. We expect this system to converge to a fixed point with ‖ψR,n − ψZ,n‖ → 0,
which yields back equation (2c).

2.2. Discretization

In prismatic geometries, space can be discretized as the Cartesian product of a radial mesh and an axial one,
very consistently with iterative formulation (3). In the following, let us denote by zj , j ∈ J1;Nj + 1K,
the boundaries of the axial mesh cells. This mesh decomposes the entire geometric domain into Nj slices
denoted as Sj , comprised between planes z = zj and z = zj+1 and of thickness hj = |zj+1 − zj |.
Equation (3a) can be integrated over the axial direction between zj and zj+1 to yield

ε
∂ψjR,n+1

∂x
(x, y) + η

∂ψjR,n+1

∂y
(x, y) + ΣψjR,n+1(x, y) = Qj(x, y)−QjZ,n(x, y), (4)

where ψjR,n+1 is the axially averaged flux at iteration n + 1 in slice Sj , Qj is the axially averaged source

term comprising scattering and fission, and QjZ,n is the axially averaged leakage source term computed
using ψZ,n:

Qj(x, y) =
1

hj

∫ zj+1

zj

Q(x, y, z) dz, QjZ,n(x, y) =
1

hj

∫ zj+1

zj

µ
∂ψZ,n
∂z

(x, y, z) dz.

For each slice, equation (4) is a standard 2D transport equation, which can be discretized using any adequate
numerical scheme. In order to perform heterogeneous reference calculations, a method of characteristics
with the Step Characteristics (SC) or Diamond Difference (DD) scheme has been chosen in our work. Let
us denote by Ci, i ∈ J1;NiK, the Ni cells constituting the unstructured radial mesh, and define |Ci| as the
area of cell Ci. As usual in the MOC–SC sources are supposed to be constant within each cell:

Qj(x, y) =

Ni∑
i=1

1Ci(x, y) Qi,j , with Qi,j =
1

|Ci| hj

∫
(x,y)∈Ci

∫ zj+1

zj

Q(x, y, z) dz dy dx. (5)
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In the equation above, 1Ci denotes the indicator function of radial cell Ci, and Qi,j is the fully averaged
source term in cell Ci of slice Sj .

The fully discretized radial equation in slice Sj with cell-wise constant representation for the source terms
therefore reads:

ε
∂ψjR,n+1

∂x
(x, y) + η

∂ψjR,n+1

∂y
(x, y) + ΣψjR,n+1(x, y) =

Ni∑
i=1

1Ci(x, y) (Qi,j −Qi,jZ,n), (6a)

whereQi,jZ,n denotes the fully averaged axial leakage source term at iteration n in cellCi and slice Sj , defined
in the same way as Qi,j .

The same discretization can be applied to the axial equation of the system: integrating equation (3b) over
the radial directions (x, y) in cell Ci yields

µ
∂ψiZ,n+1

∂z
(z) + ΣψiZ,n+1(z) =

Nj∑
j=1

1Sj (z)
(
Qi,j −Qi,jR,n+1

)
, (6b)

where ψiZ,n+1 is the radially averaged flux at iteration n+ 1 in cell Ci, and the sources are represented using
the same cell-wise flat approximation as in the radial equation. Qi,jR,n+1 denotes the averaged radial leakage
source term, at iteration n+ 1 in cell Ci and slice Sj .

Using the discretized unknowns ψjR and ψiZ , averaged leakage source terms can be expressed as

Qi,jR =
1

|Ci| hj

∫
Ci

∫ zj+1

zj

[
ε
∂ψR
∂x

(x, y, z) + η
∂ψR
∂y

(x, y, z)

]
dz dy dx,

=
−1

|Ci| hj

∫ zj+1

zj

∫
Γi

(ε nx + η ny) ψR(x, y, z) dΓi dz, (7a)

=
−1

|Ci|

∫
Γi

(ε nx + η ny) ψ
j
R(x, y) dΓi,

and Qi,jZ =
1

|Ci| hj

∫
Ci

∫ zj+1

zj

µ
∂ψZ
∂z

(x, y, z) dz dy dx =
µ

hj

[
ψiZ(zj+1)− ψiZ(zj)

]
, (7b)

where in the first equation Γi denotes the boundary of radial cell Ci, and (nx, ny) are the coordinates of
the normal vector to this boundary. Iteration indices n were dropped in these equations for the sake of
readability.

Another way of expressing averaged axial and radial source consists in averaging the radial and axial trans-
port equations (6a) and (6b), to obtain balance equationsQ

i,j
R,n+1 + Σψi,jR,n+1 = Qi,j −Qi,jZ,n,

Qi,jZ,n+1 + Σψi,jZ,n+1 = Qi,j −Qi,jR,n+1,

(8a)

(8b)

where ψi,jR,n+1 and ψi,jZ,n+1 are the radially and axially averaged values of ψR,n+1 and ψZ,n+1 in cell Ci and
slice Sj .
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2.3. Convergence of the iterative system

This paragraph studies the question of the convergence of iterative system (3) to the solution ψ of the
complete 3D problem (1). After iteration n, the errors introduced by the iterative system can be defined as
eR,n = ψR,n − ψ and eZ,n = ψZ,n − ψ.

To prove convergence of the iterative system, our goal here is to study the limit of sequences (eR,n)n∈N and
(eZ,n)n∈N as n tends to infinity. One can obtain the equations verified by eR,n and eZ,n by subtracting (1)
to both equations of (3):

ε
∂eR,n+1

∂x
(x, y, z) + η

∂eR,n+1

∂y
(x, y, z) + ΣeR,n+1(x, y, z) = −QZ,n(x, y, z),

µ
∂eZ,n+1

∂z
(x, y, z) + ΣeZ,n+1(x, y, z) = −QR,n+1(x, y, z),

where we defined QZ,n = µ
∂ψZ,n

∂z and QR,n = ε
∂ψR,n

∂x + η
∂ψR,n

∂y . These equations are similar to those
verified by the flux and can thus be discretized in the way described in paragraph 2.1:

ε
∂ejR,n+1

∂R
(R) + ΣejR,n+1(R) = −

Ni∑
i=1

1Ci(R) Qi,jZ,n, ∀j ∈ J1, NjK ,

µ
∂eiZ,n+1

∂z
(z) + ΣeiZ,n+1(z) = −

Nj∑
j=1

1Sj (z) Q
i,j
R,n+1, ∀i ∈ J1, NiK ,

(9a)

(9b)

where the notations are consistent with equations (6a) and (6b). Most numerical methods used to solve such
a set of equations can be expressed as a matricial operation similar to{

ēR,n+1 = −MR Q̄Z,n,

ēZ,n+1 = −MZ Q̄R,n+1,

where ēR,n+1, ēZ,n+1, Q̄Z,n and Q̄R,n+1 are vectors respectively storing fully averaged coefficients ei,jR,n+1,

ei,jZ,n+1, Qi,jZ,n and Qi,jR,n+1, while MR and MZ are matrices representing the discretized inversion of radial
and axial transport operators.

Furthermore, similarly to equations (8) for the flux, integrating the radial and axial transport above respec-
tively over the radial and axial mesh cells yields the two following balance equations:{

Q̄R,n+1 + ΣēR,n+1 = −Q̄Z,n,
Q̄Z,n+1 + ΣēZ,n+1 = −Q̄R,n+1.

By combining the two discretized transport inversion equations and the two balance equations above, one
can deduce the following recurrence relation:

ēZ,n+1 = MZ (ΣMR − I) (ΣMZ − I) M−1
Z ēZ,n = M it

Z ēZ,n,

where I denotes the identity matrix, and we defined the iteration matrix M it
Z linking each axial error term to

the next.
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Using the method of characteristics to discretize system (3) yields matrices MR and MZ which are lower-
triangular, under the assumption that all mesh cells are convex. More generally, this property would be
verified by any tracking-based method preserving the notion of “flow” in the hyperbolic transport equation.
During the solution of the 1D axial problem using MOC–SC-like equations, for each axial slice Sj the
diagonal coefficient of matrix MZ is

1

Σ

(
e−Σhj − 1

Σhj
+ 1

)
.

Therefore, the diagonal coefficients of matrix ΣMZ − I can be written as e−Σhj−1
Σhj

, which can be proven to
be between −1 and 0 if Σhj > 0. Equivalent results could have been obtained for the DD scheme.

Following the same line of reasoning, similar results could have been obtained for the 2D radial MOC
matrices. Since all matrices involved in the expression of M it

Z are triangular, it can be concluded that
ρ(M it

Z ) < 1, where ρ(M) denotes the spectral radius of matrix M . This proves the convergence of iterative
scheme (6). It is interesting to note that ρ(M it

Z ) approaches 1 when the mesh cells optical thickness is small.
Slow convergence speeds will therefore be expected for finely discretized geometries or void regions.

2.4. Algorithm

The 2D–1D coupling scheme leads to algorithm 1, in which transport equations (6a) and (6b) are solved in
turn and coupled using axial leakage source terms computed using balance equations (8a) and (7b). These
equations are solved for each direction Ωk in the quadrature formula SN . This scheme can easily be imple-
mented using any 2D and 1D transport methods consistent with the cell-wise constant source representation
of equation (5).

As the convergence of this loop is integrated in a complex inner-outer iterative algorithm (inverse power
iteration, Gauss-Seidel for up scattering iterations, free or MR iterations for scattering), it is difficult to
choose an appropriate stopping criteria. Based on our experience of neutronic solvers, we choose a fixed,
small number of inner iterations and the outer algorithms are used to reach convergence. However, better
stopping criteria based on ‖ψR − ψZ‖ could be studied. To be effective, such stopping criteria would have
to save a large number of iterations as they imply storing ψR and ψZ in two different vectors.

The output of the solver is the last computed value of ψZ , but axial leakage source terms QZ also need to be
kept to initialize following calls to the 2D–1D iterative solver. Storing such a group- and direction-dependent
vector drastically increases the memory requirement of the method. However, this drawback can be partially
mitigated in parallel implementations of the algorithm, especially on distributed memory systems, in which
this extra required memory can be shared between processes.

3. SPATIAL CONVERGENCE ANALYSIS

To perform the experimental spatial convergence analysis, the TAKEDA benchmark[15] is chosen. Indeed,
as the physical sections are defined on a Cartesian mesh, it is easy to refine. With the C5G7[16] benchmark
it would be more difficult for the finer mesh to respect the geometry of the fuel.

We used a Gauss–Legendre angular quadrature formula with 32 directions (8 azimuthal times 4 polar direc-
tions). The stopping criterion is fixed to |∆keff | < 10−8, which leads to ‖∆Sφ‖2 ' 10−6 at the end of
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Algorithm 1: The 2D–1D coupling algorithm

while ψR 6= ψZ do
B Solve 2D MOC equations
forall j ∈ J1, NjK do

forall Ωk ∈ SN do∫ zj+1

zj

(
εk
∂ψk,R
∂x

+ ηk
∂ψk,R
∂y

+ Σψk,R

)
dz =

∫ zj+1

zj

(
Q− µk

∂ψk,Z
∂z

)
dz ;

B Solve 1D MOC equations
forall i ∈ J1, NiK do

forall Ωk ∈ SN do∫
Ci

(
µ
∂ψk,Z
∂z

+ Σψk,Z

)
dxdy =

∫
Ci

(
Q− εk

∂ψk,R
∂x

− ηk
∂ψk,R
∂y

)
dxdy ;

Algorithm 2: Basic sequential resolution of 1D MOC equation

1 forall Ωk ∈ SN do
2 forall i ∈ J1, NiK do
3 ψ− = 0;
4 for j ∈ J1, NjK with j increasing (resp. decreasing) for µk > 0 (resp. µk < 0) do
5 β = e−hjΣ[j, i]/µk ;

6 ψ+ = βψ− + (1− β)
Q[j, i]−QR[k, j, i]

Σ[j, i]
;

7 QZ [k, j, i] =
µk (ψ+ − ψ−)

hj
;

8 ψZ [k, j, i] =
Q[j, i]−QR[k, j, i]−QZ [k, j, i]

Σ[j, i]
;

9 ψ− = ψ+;

the computation. The reference computation is run on a well-converged 500 × 500 × 500 spatial mesh. A
comparison of these reference results with published benchmark results is presented on table I.

Figure 2 presents result differences between the reference calculation and computations on coarser meshes
as a function of the mesh size. Scalar flux differences are computed using a L2-norm on the fine reference
mesh (i.e. fluxes obtained on coarser meshes are first projected on the 500× 500× 500 spatial mesh before
being compared to the reference flux). Excluding the last few points (which are too close to the reference
calculation), the measured order of convergence for the flux is close to 1, as expected of a MOC–SC scheme.
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Figure 2. Spatial convergence of the solver

Table I. Difference between tabulated TAKEDA benchmark results and our reference calculation

Difference MCNP Error bar

keff 1.3 pcm 60 pcm
flux core (group 1 / group 2) -0.38 % / 0.12 % 0.13 % / 0.10 %
flux reflector (group 1 / group 2) 0.32 % / 0.29 % 0.23 % / 0.21 %
flux control rod (group 1 / group 2) 1.12 % / 0.04 % 0.72 % / 0.48 %

4. HPC CAPABILITIES

4.1. Parallel algorithm in distributed memory

As 2D characteristic solvers are more difficult to parallelize and require more computational resources than
1D solvers, the data are distributed along radial slices. Hence the parallelization in a distributed environment
(through MPI API) is pretty simple. As the data distribution is orthogonal to the direction of 1D character-
istics solvers, the parallelization of this step of the algorithm is more complicated. That’s why the parallel
capabilities of the 2D–1D algorithm has to be assessed before developing a solver with all options of an
industrial solver.

A basic sequential algorithm implementation of the 1D solver is based on the algorithm 2 for the SC scheme.
With the first two loops (lines 1 and 2) the characteristics for all directions and columns are treated. Lines 3
to 9 correspond to the sweep of one characteristic : incoming fluxes are initialized line 3 with void boundary
condition; then the loop over slices (line 4) takes care of the angular direction. The transmission equation is
applied with lines 5, 6 and 9. Line 7 (specific to the 2D–1D coupling algorithm) computes the radial leakage.
Finally line 8 the angular flux is computed. This vector is used to compute the scalar flux. Depending on the
stopping criterion used in the 2D–1D coupling, an optimized implementation can avoid storing this vector.
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Algorithm 3 describes the parallelization of the 1D part for the SC scheme for the processor p which is
responsible of the slice jBeg to jEnd. First the communication of ψ− are added (lines 7 and 17). As
we want to avoid too large a number of communications, these communications are packed by groups of
blockSize. Variable ψ− thus becomes a vector of size blockSize and the loop over Ni ( line 2 of algorithm
2) is split into two loops (lines 3 and 9). The second loop (line 9) is under the loop over j (line 8) to benefit
from the storage of the vectors which give a priority to the continuity into a slice. This optimization also
improves the performances of the algorithm in sequential context (i.e. when jBeg = 1 and jEnd = Nj).
The choice of blockSize has an influence on the parallel efficiency. If blockSize is too small there is too
much communications and the latency of the network downgrades the performance. If blockSize is too big
the granularity of the pipeline is too big and the last (or the first depending on the sign of µk) processors
are wasting time waiting for data. Complementary work is required to automatically compute an optimal
blockSize value. To avoid breaking the pipeline between each direction, the directions of loop 2 have to
be sorted. First the directions with µk > 0 have to be treated and then those with µk < 0. The pipeline is
therefore broken only once, when the sign of µk changes.

Algorithm 3: Parallel resolution of 1D MOC equation
B Executed by the processor p dealing with the slices JjBeg, jEndK

2 forall Ωk ∈ SN do
3 forall blocI ∈ J1, Ni

blockSizeK do
if (jBeg = 1 and µk > 0 ) or (jEnd = Nj and µk < 0) then

5 ψ− = 0; B Vector of size blockSize
else

7 receiving ψ− from processor p− sign(µk) ;
8 for j ∈ JjBeg, jEndK with j increasing (resp. decreasing) for µk > 0 (resp. µk < 0) do
9 forall bloci ∈ J1, blockSizeK do

i = bloci+ (blocI − 1) ∗ blockSize;
β = e−hjΣ[j, i]/µk ;

ψ+ = βψ−[bloci] + (1− β)
Q[j, i]−QR[k, j, i]

Σ[j, i]
;

QZ [k, j, i] =
ψ+ − ψ−[bloci]

∆z
k

;

ψZ [k, j, i] =
Q[j, i]−QR[k, j, i]−QZ [k, j, i]

Σ[j, i]
;

15 ψ−[bloci] = ψ+;

if non( (jEnd = Nj and µk > 0) or (jBeg=1 and µk < 0 )) then
17 sending ψ− to processor p+ sign(µk) ;

4.2. Parallel algorithm in shared memory

To use more parallelism than the distributed algorithm presented in the previous paragraph, the shared
memory parallelism is expressed through the intel TBB API. For the 2D solver part, the parallelism on the
angular directions and on the slices (if a MPI node is responsible of more than two slices) are used. As for
the 1D solver, in order to avoid difficulty coming from the support of MPI THREAD MULTIPLE by the MPI
implementation, we parallelized lines 8–15 of algorithm 3. Once again the line 9 is split into two loops. The
upper one is moved above the loop over j (line 8) and is defined as a parallel loop.
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Figure 3. Parallel performance of MICADO

4.3. Parallel Efficiency

The parallel efficiency was assessed on the Takeda benchmark with a 200 × 200 × 200 spatial mesh, 10
characteristics per side of cell, and a Gauss-Legendre quadrature formula with 8 × 4 directions. As we
are only interested in computational performance we choose a fixed number of iteration for all iterative
algorithms (100 for the power iterations, 1 for the upscattering iterations, 1 for the free scattering iterations
and 1 for 2D–1D coupling iterations) without checking convergence. This experiment was performed on
EDF’s Ivanoe cluster [17] and used 200 nodes with 12 cores on each node. Since a buffered tracking is
chosen, the cores are exploited with shared memory algorithm and TBB implementation and only one MPI
process per node is launched. Only one tracking storage per node is therefore required. To avoid problem
with load balancing, the performance is only evaluated for numbers of nodes which evenly divide the 200
slices. All 12 cores are used except for the one-node case where performances are evaluated from 1 to 12
cores. The blockSize parameter is fixed to 2000 (resp. 4000) for the SC scheme (resp. DD scheme). Figure
3 reports the time and parallel efficiency of the power algorithm (KeffComputation), the 2D solver (solve2D)
and the 1D solver (solve1D).

For the SC scheme the results confirm our assumptions. In sequential computations, the 1D part is negligible
and justifies our choice to favor the data structure and parallelism of the 2D part over the 1D part. As
expected the parallel efficiency of the 2D part is nearly optimal. The performance drop for 100 and 200
nodes is due to load balancing and the small number of parallel tasks in shared memory (the efficiency is
theoretically bounded to 89%). As expected, the performance of the 1D part is not so impressive but as the
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time spent in 1D part remains lower than the 2D part the global efficiency remains good (better than 80%
below 300 cores and better than 60% up to 1200 cores). With 2400 cores which is the maximum of usable
cores for this test case with only one slice per node, the limit of the strong scalability study is reached with
an efficiency of 46% with only 0.26s for one power iteration.

As expected due to the lower arithmetic intensity (no exponential to compute) ∗, the results of the DD
scheme are better in terms of computation time, but worse in terms of parallel of efficiency. For example for
the 2D part, a performance drop of 15% due to memory accesses is observed for the use of 12 cores in share
memory. As the computation time is reduced and the communication time remains similar, it was expected
that for a large number of nodes the 1D part would catch up the 2D part. Until 300 nodes for this test case,
the efficiency remains really acceptable.

5. CONCLUSIONS

We presented in this work a neutron transport solver aiming at dealing with 3D whole-core heterogeneous
calculations. This solver is based on the 2D–1D coupling method first introduced in [1]: the geometry is split
into 2D slices; 2D MOC resolutions on these slices are coupled by axial leakage source terms coming from
a set of 1D axial transport problems. Under an assumption of convex mesh cells and non-null cross-sections,
a proof of convergence of this iterative process was established.

We then presented our high performance, parallel implementation of this algorithm in the MICADO solver.
Benchmarking this solver against the Takeda case shows that the 2D-1D coupling algorithm does not affect
the spatial convergence order of the MOC solver. As for performance issues, our study shows that even
though the data distribution was designed to improve the 2D solver efficiency, the 1D solver is effective
enough to ensure a good parallel efficiency of the global algorithm.

A few drawbacks of the method were also uncovered in this process. In particular, the need for storing axial
leakage sourcesQz between iterations could become a very limiting factor in terms of memory consumption
for 3D whole-core computations with many energy groups. This problem could be solved be three different
ways. First, distributing angular directions and/or energy groups over different parallel processes would
ensure that no single computing node needs to store the full multigroup angular field. Second, axial source
terms Qz could be projected on a smaller space to only store an approximated value. Such a method would
however require a good acceleration method to counterbalance the loss of information in the initialization
of the iterative system. The third way could consist in using higher order schemes to reduce the number of
required mesh cells in the 2D slices.

In terms of parallel efficiency some improvements can be done. A major improvement could come from
the use of SIMD instructions, which are well suited to the parallelism implied by polar angles. Indeed,
preliminary results with the use of SIMD instructions are very promising but need to be confirmed. Such
parallelization however reduces the number of available directions for the shared memory parallelism, which
would then need to focus on another part of the algorithm, for example the characteristics sweeping in the
2D solver.

∗arithmetic intensity [18] is the ratio of floating point operations to the number of memory accesses from the main memory. A
high arithmetic intensity reduces the effect of memory contention for an application in shared memory.
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