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Abstract. The Method of Characteristics is an efficient 
tool for the numerical solution of the neutron transport 
problem. In this paper, a novel technique for a better 
computation of transmission probabilities in the Method of 
Characteristics is discussed. The technique relies on a 
transverse quadrature that properly accounts for 
discontinuities along trajectories, and on the use of a sei-
analytical formula for the transverse integration of the 
transmission probability. 

The implementation of this new technique has proved 
successful, insofar as it requires a much larger tracking step 
(up to five times) than the regular Method of Characteristics 
to obtain a given accuracy for the reaction rates, as our 
numerical results show. A comparison of the agorithmic 
complexity suggests that the new method could lead to 
significant gains in terms of computing times (up to 30%). 
The new method also guarantees a monotonous convergence 
with respect to the transverse discretization. 
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1. Introduction 

At the various stages of a nuclear reactor’s life, 
numerous studies are needed to guaranty the safety and 
efficiency of the design, analyse the fuel cycle, prepare 
the dismantlement, and so on. Due to the extreme 
difficulty (and in some cases, impossibility) to take 
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extensive and accurate measurements in the reactor 
core, most of these studies are numerical simulations. 

The complete numerical simulation of a nuclear reactor 
involves many types of physics: neutronics, thermal 
hydraulics, materials, control engineering, ...). It 
therefore requires complex simulation schemes 
involving various computing codes and coupling 
techniques. Among these, the neutron transport 
simulation is one of the fundamental steps, since it 
allows computation – among other things – of various 
fundamental values such as the power density (used in 
thermal hydraulics computations) or fuel burn-up. 

The neutron transport simulation is based on the 
Boltzmann equation [1], which models the neutron 
population inside the reactor core. Among the various 
methods allowing its numerical solution, much interest 
has been devoted in the past few years to the Method of 
Characterics in unstructured meshes (MOC), since it 
offers a good accuracy and operates in complicated 
geometries [2]. 

In its classical version, the MOC accurately accounts 
for transport within the regions by means of an 
analytical integration of the neutron flux along a set of 
trajectories in directions given by an angular quadrature 
formula. These trajectories are computed during an 
initial step of the calculation, which is called the 
tracking phase. Although much work has been done on 
tracking issues and many techniques have been 
proposed to reduce the approximations introduced by 
the angular quadrature formula [3], few studies have 
been focused on the discretization errors due to the 
tracking step used to track the set of trajectories in a 
given direction [4]. 

The objective of this work is to palliate the geometrical 
approximations due to trajectory tracing by properly 
accounting for (a) the material discontinuities along the 
trajectories and (b) the transverse variation of the 
transmission probability, without penalizing the 
tracking step. 



This paper is organised as follows: in the next section, 
we briefly review the Boltzmann equation and the 
classical Method of Characteristics (MOC). Then we 
present in section 3 the new macroband technique, 
while numerical examples are given in the following 
section. We end with a brief conclusion. 

2. Neutron Transport with the MOC 

A. The Boltzmann Equation 

Before deriving the Boltzmann equation, we have to 
define the relevant dependant variables. In a general 
case, seven independent variables are required to 
describe a neutron population: time t , and coordinates 
in a 6-dimension phase space 

- : spatial coordinates (3 coordinates); r

- : velocityv 1 (1 coordinate); 

- : direction of flightΩ 2 (2 coordinates) 

The neutronic population is always seen under a 
statistic viewpoint, and is represented by the neutron 
density distribution , such that 

 is the number of neutrons at 

time 

( tvN ,,, Ωr )
( ) ΩrΩr 23,,, dddvtvN

t  in a volume element ( )Ωr 23 ,, ddvd  around 
point  in the phase space. Although this density 
distribution is the fundamental dependent variable, 
most transport problems are formulated in terms of the 
angular flux: 

( Ωr ,,v )
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The materials crossed by the neutron flux are 
characterized by their macroscopic cross-section Σ . 
For any interaction of type x , the number of 
interactions between the neutronic population and the 
material per unit time and per unit volume can be 
defined as the reaction rate: 

( ) ( ) ( ).,,,,,,,, tvtvtv xx ΩrrΩr ψτ Σ=  

The Boltzmann equation is derivated by computing the 
change in the number of particles between t  and dtt +  
in a volume element in the phase space. The change in 
this quantity can be attributed to three mechanisms: 

1. Streaming of neutrons in and out of the 
volume element across its surfaces; 

2. Collisions that cause neutrons to be absorbed 
or to be scattered outside of the volume 
element; 
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3. Emission of neutrons in the volume element 
from scattering, fission or external sources. 

Derivating these three terms yields the following 
Boltzmann equation (in which we omitted the variables 
for the sake of readability): 
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In this formulation, tΣ  represents the total cross 
section of the material, and the source term q  
comprises both the neutron sources (fission or external 
sources) and the scattering. The detailed expression of 
the latter is of no interest for the following. 

More details about the derivation of the Boltzmann 
equation are available in [1]. 

B. The Method of Characteristics 

The Method of Characteristics (MOC) is widely used 
for transport problems [2],[5]-[7]. It provides a solution 
for the Boltzmann equation in a geometric domain : D
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where ( )Ωr,ψ  represents the angular flux at position r  
in direction , Ω ( )rΣ  represents the total cross-section 
and ( )Ωr,q  is the emission density of the neutron 
sources. β  is an albedo operator on the domain 
boundary, and 0ψ  represents an angular flux entering 
through the boundary. 

Equation (2) is simply a reformulation of the 
Boltzmann equation (1), in a time-independent fashion, 
and in which the energy E  (or velocity ) has been 
discretized in a multigroup formalism, and the direction 
of flight  is discretized in an  quadrature 
formula. Since it does not affect the present work, we 
dropped the energy variable dependance for the sake of 
readability. 

v

Ω NS

In the method of characteristics, the spatial 
discretization is achieved by assuming that the 
geometric domain is composed of unstructured 
homogeneous regions, and introducing approximated 
representations for the dependant variables within the 
regions. First, a region-wise flat spatial representation 
is used for the source term and the cross-sections: 
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Integrating equation (2) on a straight trajectory t  of 
direction  crossing region  yields the following 
equations: 

Ω i
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with the notations of fig. 1:  are the angular 
fluxes entering (-) and exiting (+) region i  along the 
trajectory 

( )ti
±ψ

t , ( )tiψ  is the average angular flux along the 
trajectory within the region, and  is the chord 
length of the trajectory within the region. In 
equation (4), the term  represents a 
transmission probability for the angular flux across the 
region. 

( )tRi

( )tRiie Σ−

Thus, starting with a given initial boundary condition 
and repeatedly applying equations (4) and (5) on a line 
intersecting the geometric domain, we can compute the 
average angular fluxes along each line segment 
intersecting an homeogeneous region. 

In most practical applications of the MOC, a mesh is 
defined over the plane transverse to the direction of 
propagation . The region-averaged angular 
flux 

Ω
( )Ωiψ , is then computed using an integration 

quadrature formula based on the trajectories at the 
center of the transverse mesh cells: 
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where  is the trajectory at the center of the ’th 
mesh cell. We can imagine each trajectory  to be 
lying within a trajectory band of cross sectional 
area  (fig. 2), and the summation is done over all the 
trajectory bands k  for which  crosses the considered 
region i . 

kt k

kt

k∆

kt

Usually, the transverse mesh is defined with a constant 
step ∆ , so that ∆=∆∀ kk, . In the following, we will 
refer to ∆  as the tracking step. 

Fig. 2.  Classical transverse mesh. 

Fig. 1.  Transmission of the angular flux across a region
along a characteristic line. 

3. The Macroband Method 

A. Tracking-Related Issues 

Equation (6) is only valid under a few assumptions: 

(a) the angular flux is constant across each transverse 
mesh cell; 

(b) the transmission probability of the angular flux 
across a region intersecting the trajectory band can 
be approximated by the value of the transmission 
for the trajectory at the center of the band. 

However, both assumptions are only approximately 
verified for large values of the tracking step ∆  and thus 
entail a loss of accuracy on the solution. This work 
focuses on assumption (b), which fails for large values 
of the tracking step for two reasons: 

- material discontinuities: numerically, the 
intersection between a region and a band only 
occurs when the middle trajectory intersects the 
region. Thus partially inserted regions may not be 
accounted for in a band, and the transmission is 
computed as though the region was not there. For 
example, this phenomenon occurs in fig. 2, where 
the region intersects the topmost band, but is not 
crossed by the corresponding trajectory. 

- transverse variation of the chord length: in 
equation (4), the transmission probability is 
computed using only the chord length at the middle 
of the band, although this chord length usually 
varies transversally across the band. 

As a consequence of these approximations, rather small 
tracking steps have to be used in order to obtain 
accurate results with the method of characteristics. 
Moreover, the lack of accounting for material 
discontinuities not only affects the precision of the 
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calculation, but also results in a non uniform 
convergence with the tracking step . The main aim of 
this work is to propose a technique to avoid such effects 
in order to enventually be able to increase the tracking 
step (and thus gain computing resources) without loss 
of accuracy on the solution. 

∆

B. Avoiding Material Discontinuities 

To eliminate the oscillations and achieve uniform 
convergence one can project all the material 
discontinuities over the transverse direction and 
integrate within each two consecutive projections. 

Moreover, because the integrand is now continuous, the 
transverse integration of equation (6) can be done using 
a more accurate Gauss-Legendre (GL) quadrature [3]. 
Unfortunately, the projection of discontinuities usually 
produces a transverse mesh with a large number of 
small mesh cells that, not only does not require GL 
quadrature, but that is too precise and onerous for 
routine applications. Even when limiting the projection 
of discontinuities to each cell of an assembly, there is 
no notable advantage on using a GL quadrature [4]. 
Besides, this latter solution introduces a fair amount of 
numerical dispersion for the transverse flux when 
passing from one cell to the following. 

In this work, we propose a technique that uses 
macrobands to locally project the discontinuities so as 
to minimize the presence of very small quadrature 
steps. This is done as follows: 

1. For each direction Ω  in the angular quadrature 
formula, we define a constant-step transverse 
quadrature mesh of cell width . This mesh 
defines macrobands of direction  that cover the 
entire domain (Fig. 3). 

∆
Ω

2. Each macroband is split into sections, so that the 
interfaces between two consecutive sections follow 
the region boundaries (Fig. 4). 

3. The projection of material discontinuities is done 
locally within each section, and leads to the 
decomposition of each section in one or more 
continuous sub-bands (Fig. 4). 

4. Flux propagation along each sub-band is calculated 
using a transmission equation (either the classical 
transmission equation (4) or a more advanced 
equation that shall be discussed in the following 
section). 

5. At section interfaces, the upstream and 
downstream sections may not have the same 
number of sub-bands, so that the fluxes exiting the 
upstream sub-bands have to be redistributed into 
the fluxes entering the downstream sub-bands 
(Fig. 5). 

The flux redistribution at section interfaces is necessary 
to ensure neutron conservation and reduce as much as 

possible the numerical dispersion introduced at the 
section interfaces. Assuming that the upstream 
flux  is constant within the homogeneous sub-
band 

upstr
k ′ψ

k ′  of the upstream section, we can compute the 
downstream fluxes using the following formula: 

 ,∑
′

′
′

∆
∆

=
k

upstr
k

k

kkdownstr
k ψψ  (7) 

where the sum in k ′  is done over all the sub-bands of 
the upstream section, k∆  represents the width of 
downstream sub-band , and  denotes the length 
of intersection of downstream sub-band  with 
upstream sub-band 

k kk ′∆
k

k ′  (fig. 5). 

Fig. 3.  Transverse mesh defining macrobands on a cluster
of simplified PWR fuel cells. 

 
 

 
Fig. 4. Example of sections and local projection of
material discontinuities in a cluster of simplified PWR
fuel cells. 

C. Improved Transmission Probabilities 

The classical transmission equation (4) only uses the 
middle trajectory to compute a transmission 
probability. However, for consistency with the 
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piecewise constant approximation for the angular flux 
on the transverse direction, the transmission equation 
should be averaged over all trajectories in the trajectory 
band: 
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where the notations are consistant with those of 
equation (4), with  and  respectively indexing the 
region crossed and the considered band.  is the 
averaged transmission coefficient across region i  
within band : 
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where the integration is done over the transverse 
extension of band , and  represents the chord 
length within region  for the trajectory at transverse 
abscissa . 

k ( )⊥xRi

i
⊥x

Because our local projection of the discontinuities 
ensures that there are no discontinuities within the 
trajectories paths in a sub-band, an approach could 
consist of using a low-order Gauss-Legendre 
quadrature to evaluate integral (9). However such a 
method would significantly increase the amount of 
trajectory storage and, more importantly, the numerical 
effort during the sweep. Instead, we have chosen to use 
a few-term Taylor expansion for the exponential and 
write: 

 ,
1

p
n

p
p

ReT Σ= ∑
=

Σ− α  (10) 

Fig. 5.  Example of a flux redistribution at a section
interface in a cluster of simplified PWR fuel cells. 

where we dropped indices  and  for the sake of 
readability.  is the Taylor expansion order, and 

i k
n R  is 

the mean chord length for the band within the region, 
and 
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The values of R  and  can be computed using a 
Gauss-Legendre quadrature during the tracking phase, 
so that formula (10) only adds a few operations to the 
track sweep. 

pα

4. Numerical Results 

We have implemented this new transverse quadrature 
technique in the characteristic solver of the APOLLO2 
code [6], and present here some of the results obtained 
for different geometry configurations. 

When not otherwise specified, the results presented 
below used a Taylor expansion of order 5=n  in 
equation (10). 

Because the macrobands in our technique are composed 
of heterogeneous sections and each section may contain 
more than one track, to establish a fair comparison with 
the approximation used in the classical MOC we 
convert our tracking step  into an effective tracking 
step: 

∆

 ,
sb

eff n
∆

=∆   

where  is the average number of sub-bands within a 
section. In other words,  is the average width of the 
homogeneous sub-bands. In all the following results, 
we use this effective tracking step  to compare the 
new technique with a classical MOC with step 

sbn

eff∆

eff∆

∆ . 

A. Convergence 

We consider first the simple fuel cell in Fig. 6a with a 
uniform source in the moderator. The relative errors in 
the absorption rate versus the tracking step ( ∆  for 
classical MOC and  for the new technique) are 
given in Fig. 6b. We observe that classical MOC 
exhibits nonuniform convergence, as a result of partial 
region intersections with trajectory bands. On the other 
hand, the new technique converges monotonously even 
for large tracking steps. 

eff∆
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B. Accuracy 

Fig. 6b also shows that for the same transverse band 
size the macroband technique is up to six times more 
accurate than the classical MOC. Conversely, for a 
given precision, the macroband method allows for a 
tracking step up to five times larger than the classical 
MOC. For example, to obtain the same precision as in a 
regular MOC calculation with , the tracking 
step with macrobands could be increased up 
to . 

mm2.0=∆

mmeff 1=∆

These results scale to larger cases. Figures 7 and 8 
show a comparison between the classical and the new 
transverse quadrature techniques over domains with 
about 500 regions, respectively for a typical RBMK 
cell and a typical rodded PWR assembly. To avoid 
compensation errors by full domain averaging, we 
compared here the maximum relative error in the 
absorption rate per region. As shown in the figures, 
error compensation due to the large number of regions 
makes somewhat smoother the convergence of the 
classical MOC. Regardless, the gain in precision with 
the macroband technique is still significant. For 
example, a precision of 1% can be obtained with 

, whereas the regular MOC requires 
 for the same precision. 

mmeff 1.0=∆

mm025.0=∆

For the PWR assembly calculation (fig. 8b), one 
observes that the averaged number of homogeneous 
sub-bands  per section increases with the tracking 
step 

sbn
∆ . Thus, there is a limit value of  beyond which 

the effective tracking step  stagnates (and even 
decreases) and there is no further improvement of the 
results. 

∆
eff∆

 
Fig. 7a.  Geometry of a fourth of RBMK cell. 

 

Fig. 7b. Comparison of the maximum relative errors for
the absorption rate per region versus tracking step on a
typical RBMK cell. The reference is a classical MOC
with mm005.0=∆ . 

 
Fig. 6a.  Geometry of a simplified PWR fuel cell. 

 

Fig. 6b.  Comparison of the relative errors for the
integrated absorption rate versus tracking step on a
simplified PWR fuel cell. The reference is a classical
MOC with . mm005.0=∆

A final word regarding the sensitivity of the results 
with respect to the order  of the Taylor expansion in 
Equation (10): figures 7b and 8b show that there is a 
negligible gain when increasing n . Therefore, one 
could reduce  to 1 – and even 0 – with no appreciable 
loss in precision. The implication is that, when there is 
a large number of regions in the geometry domain, the 
main cause for the error of the classical transverse 
quadrature is due to the neglect of a correct treatment 
for regions discontinuities within track bands. 

n

n
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C. Computing Time 

Due to the lack of optimization in the implementation 
of the new transverse quadrature, a direct comparison 
of computing times with the classical MOC is 
unfeasible at the time of this writing. Nevertheless, we 
may compare their algorithmic complexities, both in 
terms of number of operations and tracking storage 
requirements. As far as the sweeping is concerned, the 
move to the macroband technique affects only the 
treatment of the transmission equation. 

The number of arithmetic operations and the size of the 
tracking data required per track sweep for the 
macroband and the classical tracking techniques, based 
respectively on Eq. (4) and on Eqs. (8) and (10), are 
compared in Table I. 

Because of its dependence on the regions shape and 
distribution throughout the domain, we are unable to 
predict the exact value for the average computing 
cost r  for flux redistribution. However, we can 
evaluate it a posteriori, for a particular problem as: 

,
reg

sb

n
n

r =  

where  is the average number of sub-bands within a 
section, and  is the average number of regions 
crossed by a sub-band. A conservative value for the 
RBMK cell calculation shown in figure 4 is 

sbn

regn

6.0≈r . 
This implies that with a first-order Taylor expansion the 
new technique requires roughly 2.3 times the amount of 
operations and 3.2 times the amount of storage needed 
by the classical MOC with the same tracking step ∆ . 
For a 0th order Taylor expansion (i.e. when 
approximating the transmission probability using only 
the average chord length), the only additional cost for 
the macrobands is due to the flux repartition at section 
interfaces. 

5. Conclusion 

We have developed and implemented a new tracking 
technique for the method of characteristics that 
accounts for material discontinuities and uses a semi-
analytical transverse quadrature formula. The observed 
gain in precision compared to the classical MOC 
tracking confirms that it is the low precision of the 
classical transverse integration that severely limits the 
accuracy of the MOC. 

Our numerical examples show that macroband 
transverse quadrature gives equivalent results than the 
classical MOC with tracking steps up to 5 times greater. 
It also guarantees monotonous convergence, even for 
large values of the tracking step. A comparison of 
numerical cost and tracking storage requirements shows 
promise that, with a properly optimized 
implementation, the macroband method can be nearly 
twice as fast as the classical MOC. 

TABLE  I 
ALGORITHMIC COMPLEXITIES FOR THE CLASSICAL MOC AND 

THE MACROBAND METHOD 
 

Type of 
Operation exp ×  + storage 

Classical 
MOC 1  2  2  1  

Macrobands 
( 0≠n ) 1  rn ++3  n+2  rn 21 ++  

Macrobands 
( 0=n ) 1  r+2  2  r21+  

r  represents the average cost for flux repartition at section interfaces 

 
Fig. 8a.  Geometry of an eighth of rodded PWR assembly.

 

Fig. 8b.  Comparison of the maximum relative errors for
the absorption rate per region versus tracking step on a
typical rodded PWR assembly. The reference is a
classical MOC with . mm005.0=∆
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Still, there remains the error introduced by the 
piecewise constant approximation for the transverse 
variation of the angular flux. In future research we 
intend to investigate the use of a piecewise linear flux 
transverse expansion. The combination of this 
improved flux expansion with the macroband tracking 
technique introduced in this work has potential for a 
further increase of the tracking step for a given 
accuracy. 
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