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ABSTRACT

A novel technique for a better computation of transmission probabilities has been developed for the
method of characteristics in unstructured meshes (MOC). This technique relies on a transverse
quadrature that properly accounts for discontinuities along trajectories, without penalizing the
transverse step, and on the use of a Taylor expansion for the transverse integration of the transmission
probability. The implementation of this new technique has proved rather successful, insofar as the
method requires a much larger tracking step (up to five times) than the regular MOC to obtain a given
accuracy for the reaction rates.
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1. INTRODUCTION

In the past years, the Method of Characteristics (MOC) has become a popular tool for the numerical
solution of the neutron transport equation [2, 3, 5, 6]. The MOC accurately accounts for transport within the
regions by means of an analytical integration of the neutron flux along a set of trajectories in directions
given by an angular quadrature formula. In most practical applications of the MOC a (constant step) mesh
is defined over the plane transverse to the direction of propagation Ω and the assumption is made that the
angular flux is constant across each mesh cell: ψ(r⊥ + xΩ,Ω) = ψk(x,Ω) for r⊥ ∈ Ik, where Ik is the
k’th transverse mesh cell. Moreover, the transmission of the constant flux ψk across one region intersecting
the trajectory band within the transverse mesh cell Ik is approximated by the value of the transmission for
the trajectory at the center of the mesh cell. This situation is illustrated in Fig. 1 for the case of XY
two-dimensional geometries for which there is only one transverse coordinate x⊥.

Hence, two approximations affect the precision of the calculation in terms of the transverse quadrature
step ∆: a) the introduction of a piecewise constant transverse flux approximation and b) the calculation of
the transmission probability using the middle trajectory of the mesh interval. These approximations are
akin to using a constant step (rectangular) quadrature on r⊥. A further source of error results from the
presence of regions that partially intersect a trajectory band. Numerically, the intersection occurs only
when the middle trajectory intersects the region. For example, for the trajectory band Ik−1 in Fig. 1, the
effect of the partially inserted region is not accounted for and transmission is computed as if the inserted
region was not there. This not only affects the precision of the calculation but also results in a non uniform
convergence with the quadrature step ∆. As a consequence of these approximations, a rather small tracking
step ∆ has to be used in order to obtain accurate results with the MOC.

To eliminate the oscillations and achieve uniform convergence one can project all the material
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Figure 1. Illustration for MOC transverse integration. The transverse current ∆ × ψ− entering
the region produces the transverse current ∆ × ψ+ exiting the region. The transmitted flux ψ+ =
e−Σl × ψ− is computed using the track length l of the middle trajectory.

discontinuities over the transverse direction and integrate within each two consecutive projections.
Moreover, because the integrand is now continuous, the latter integration can be done using a more
accurate Gauss-Legendre (GL) quadrature [4]. Unfortunately, the projection of discontinuities usually
produces a transverse mesh with a large number of small mesh cells that, not only do not require GL
quadrature, but that is too precise and onerous for routine applications. Even when limiting the projection
of discontinuities to each cell of an assembly, there is no notable advantage on using a GL quadrature [7].
Besides, this latter solution introduces a fair amount of numerical dispersion for the transverse flux when
passing from one cell to the following.

In this work we propose a new tracking technique that a) uses a Taylor expansion to improve on the
calculation of the transmission probability and b) uses macrobands to locally project the discontinuities so
as to minimize the presence of very small quadrature steps. The paper is organized as follows: In the next
section we give a brief description of the method of characteristics. In Section 3 we present the new
macroband tracking technique, while numerical examples are given in the following section. We end with a
brief conclusion. In the Appendix we outline the extension of macroband tracking to the case of closed
domains with cyclic trajectories.

2. THE METHOD OF CHARACTERISTICS

The method of characteristics provides a solution for the transport equation in a geometric domain D
composed of unstructured homogeneous cells:{

(Ω.∇+ Σ)ψ = q, (r,Ω) ∈ D × (4π)
ψ = β ψ + ψ0, (r,Ω) ∈ ∂D × (2π)−

(1)

where ψ(r, Ω) represents the angular flux at position r in direction Ω, Σ(r) represents the total
cross-section and q(r,Ω) is the emission density. β is an albedo operator on the domain boundary and ψ0

represents an angular flux entering through the boundary.
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The MOC equations are based on the discrete ordinate formulation of the transport equation (1). The
spatial discretization is achieved by introducing approximated representations for the fluxes within the
regions and for the fluxes on the regions boundaries. First, a flat spatial representation for the source term is
used within each region:

q(r) = qi, r ∈ region i (2)

Second, a direction-dependent, piecewise constant approximation is used for the angular fluxes over the
regions boundaries. This representation is obtained by defining a mesh {Ik, k = 1, ...,K} over the
transverse coordinates and by assuming that the angular flux is constant across each mesh cell:

ψ(r,Ω) = ψk(x,Ω), r⊥ ∈ Ik, (3)

where r = r⊥ + xΩ.

The MOC is based on two equations [1]: the transmission equation (4) and the balance equation. The latter
does not concern us in this work. The transmission equation describes the relation between the incoming
and exiting angular fluxes and the internal source of the region: from cell homogeneity and the assumption
of flat source (2):

ψ+
t (Ω) = e−Σ R(t) ψ−t (Ω) +

1− e−ΣR(t)

Σ
q(Ω), (4)

where t denotes a trajectory of direction Ω crossing a region of total cross section Σ, the ψ±t (Ω) are the
angular fluxes exiting (+) and entering (-) the region along the trajectory, R(t) is the chord length of the
trajectory within the region and q(Ω) is the flat angular source term in the region.

For consistency with the piecewise contant approximation for the angular flux on the transverse plane, the
above equation should be averaged over all trajectories in the trajectory band defined by the transverse
mesh cell Ik. The result is

ψ+
k (Ω) = T ψ−k (Ω) +

1− T

Σ
q(Ω), (5)

where ψ±k (Ω) are the transverse averaged values of the boundary fluxes and

T =

∫
Ik

e−Σ R(r⊥)dr⊥∫
Ik

dr⊥
(6)

is the transverse averaged transmission. In this last equation, R(r⊥) = R(t) is the chord length within the
region for the trajectory t through r⊥.

However, instead of using the consistent value (6), in the classical MOC one uses the approximation

T ∼ exp(−ΣRk), (7)

where Rk is the chord length for the trajectory through the center of transverse cell Ik. Note that this
technique is only exact for the extreme case when the intersections of the trajectories with the region are of
equal length. The error introduced by this approximation is thought to be partially compensated by
direction-dependent chord length renormalization [4].

To palliate the impact of this approximation is the main aim of our work.
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3. A NEW TRACKING METHOD FOR THE CHARACTERISTICS

In our work we have chosen to use a semi-analytical approximation for the true transmission in (6). The
details will be given for the case of XY two-dimensional geometries, for which there is only a transverse
coordinate x⊥. For this discussion we shall assume that the region is fully intersected by the trajectory
band defined by a mesh cell Ik and will discuss later a technique to avoid region discontinuities. One may
think of these trajectory bands as ’homogeneous’ bands, i.e., as bands composed of homogeneous sections.

We note that if the region boundaries are straight lines, then the calculation of T in (6) can be done
analytically to obtain

T =
e−Σ Rk

Σak
sinh(Σak).

Here ak = ∆(tanα+ − tanα−)/2, where ∆ is the mesh cell width and α± are the angles of the upstream
(-) and downstream (+) boundaries of the cell with respect to the transverse direction. This is an attractive
result in that it yields the exact transmission while requiring the storage of two parameters, Rk and ak, per
track and the evaluation of two functions per track sweep. Unfortunately, for curved surfaces, such as arcs
of circles, there is no analytical expression for T , that now contains an integral over ϕ involving the
exponential exp[−Σf(ϕ)], where f(ϕ) is a non linear function of ϕ.

Because for homogenous bands there are no discontinuities within the trajectories path, a different
approach could consists of using a low-order Gauss-Legendre quadrature over the cell width ∆, but this
will significantly increase the amount of trajectory storage and, more importantly, the numerical effort
during the sweep. Instead, we have chosen to use a few-term Taylor expansion for the exponential and write

T ∼ e−Σ Rk

nk∑
p=1

αpΣp, (8)

where Rk is the mean chord length within the region and the

αp =
(−1)p

p!∆

∫
Ik

[R(x⊥)−Rk]pdx⊥

and the value of Rk are computed by Gauss-Legendre quadrature during the tracking step. Formula (8)
gives accurate values for a small expansion order nk, while adding a few operations to the track sweep. It
requires the storage of 1 + nk coefficients per track, but the calculation of these coefficients, although
needing extra local tracking, is done during the tracking step and, therefore, does not have a significant
impact in the overall cost of the flux calculation.

The application of the above technique requires that the trajectory band does not encounter any media
discontinuity on its path. The easiest way to achieve this is to project all the discontinuities over the
transverse direction. However, we have already pointed out that this global projection results on an
unnecessarily large number of narrow mesh cells that makes routine calculation prohibitive. Our solution
for this dilemma is to use local discontinuity projection and only when necessary. The implementation is
done by dividing the trajectory band of every transverse mesh cell, that we call a macroband, into sections.
By section we mean the portion of the macroband contained within two consecutive full region crossings
(or by boundary surfaces). It is only within each section that we identify and project the discontinuities. An
illustration of a section is shown in Figure 2.
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Figure 2. A section within a macroband of width ∆. The section is the area of the macroband be-
tween two consecutive full-region crossings (FRC). Only the discontinuities within the macroband are
projected within the section to decompose the macroband into four homogeneous sub bands.

For the example shown in the figure, the section of the macroband contains two partially inserted
discontinuities plus one boundary discontinuity. Projection over the transverse direction divides the
macroband, within the section, into four homogeneous sub bands. The individual fluxes entering each
homogenous sub band are propagated via Eq. (5) with the average transmission given by
approximation (8). The fluxes ψk entering the different homogeneous sub bands of the section are
computed from flux continuity, by assuming that the flux ψupstream exiting the upstream section is constant
within the homogeneous sub bands of that section. This gives the following formula:

ψk =
∑
k′

∆kk′

∆k
(ψk′)upstream, (9)

where the sum in k′ is over all the continuous sub bands contained in the segment upstream and ∆kk′

denotes the length of the intersection of sub band k with sub band k′ of the upstream section. The drawback
of this approximation is that it generates numerical dispersion across the sections of a macroband, but not
across the macrobands. The ψk values for the initial section are obtained from the boundary fluxes. The
coefficients ∆kk′/∆k are computed during the tracking phase and added to the tracking trajectory data.

As shown in the following section, to equivalent precision in the results, our technique allows for a band
width ∆ greater than that required for the classical MOC transverse quadrature and, therefore, for a more
efficient calculation. A supplementary advantage is that the technique permits a straightforward
implementation for cyclic trajectories, as shown in the appendix.

To summarize:

1. For each direction Ω in the angular quadrature formula, we define a transverse quadrature mesh of
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cell width ∆.

2. We decompose the trajectory macrobands defined by each transverse mesh cell into sections. Each
section is a part of the trajectory macroband contained within two consecutive full region crossings.

3. By local projection of the discontinuities, each section is decomposed into one or more continuous
sub bands.

4. Flux propagation along each homogeneous sub band is calculated with the average transmission
given by approximation (8).

5. Equation (9) is used at section interfaces to ensure neutron conservation.

4. NUMERICAL RESULTS

We have implemented the new transverse quadrature technique in a characteristic solver and present here
some of the results obtained for different geometry configurations. When not otherwise specified, the
results presented below used a Taylor expansion of order nk = 5 in Eq. (8). Because the macrobands in our
technique are composed of heterogeneous sections and each section may contain more than one track, to
establish a fair comparison with the approximation used in the classical MOC we convert our tracking
step ∆ into an effective tracking step:

∆eff =
∆
nsb

,

where nsb is the average number of homogeneous sub bands within a section. In all our results we used the
effective tracking step ∆eff to compare the new technique with classical MOC with step ∆.

4.1. Convergence

We consider first the simple fuel cell in Fig. 3(a) with a uniform source in the moderator. The relative
errors in the absorption rate versus the tracking step (∆ for classical MOC and ∆eff for the new technique)
are given in Fig. 3(b). We observe that classical MOC exhibits nonuniform convergence, as a result of
partial region intersections with trajectory bands. On the other hand, the new technique converges
monotonously even for large tracking steps.

4.2. Accuracy

A numerical comparison is given in Table I. We observe that for the same transverse band size the
macroband technique is up to six times more accurate than the classical MOC. Conversely, for a given
precision, the macroband method allows for a tracking step up to five times larger than classical MOC. For
example, to obtain the same precision as in a regular MOC calculation with ∆ = 0.2mm, the tracking step
with macrobands could be increased up to 1 mm.

These results scale to larger cases. Figures 4 and 5 show a comparison between the classical and the new
transverse quadrature techniques over domains with about 500 regions for a typical RBMK cell and a
typical PWR assembly, respectively. To avoid compensation errors by full domain averaging, we compared
here the maximum relative error in the absorption rate per region. As shown in the figures, error
compensation due to the large number of regions makes somewhat smoother the convergence of the
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(a) Cell geometry
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Figure 3. Comparison between the classical MOC and the macroband technique: relative errors for
the integrated absorption rate versus tracking step. The reference was classical MOC with 0.005 mm
tracking step.

Table I. Relative absorption rate errors versus tracking step as obtained with the classical MOC and
the macroband method. The reference used is classical MOC with 0.005 mm tracking step.

tracking step (mm) 0.01 0.05 0.1 0.2 0.5 1

classical MOC 0.00E+00 -6.79E-04 -1.22E-03 -6.40E-03 -8.86E-03 -2.15E-02

macrobands 8.94E-05 -1.07E-04 -4.82E-04 -1.48E-03 -3.48E-03 -3.79E-03

classical MOC. Regardless, the gain in precision with the macroband technique is still significant. For
example, a precision of 1% can be obtained with ∆eff = 0.1mm, whereas the regular MOC requires
∆ = 0.025mm for the same precision.

For the PWR assembly calculation one observes that the averaged number of homogeneous sub bands nsb

per section increases with the tracking step ∆. Thus, there is a limit value of ∆ beyond which the effective
tracking step stagnates (and even decreases) and there is no further improvement of the results.

A final word regarding the sensitivity of the results with respect to the order nk of the Taylor expansion in
Equation (8): figures 4 and 5 show that there is a negligible gain when increasing nk. Therefore, one could
reduce nk to 1, and even 0, with no appreciable loss in precision. The implication is that, when there is a
large number of regions in the geometry domain, the main cause for the error of the classical transverse
quadrature is due to the neglect of a correct treatment for regions discontinuities within track bands.
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(a) RBMK assembly geometry
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(b) Maximum relative error on absorption rate per region

Figure 4. Comparison of the maximum relative errors in the absorption rates per region versus the
tracking step for a typical RBMK cell. Results obtained with the classical MOC and the macroband
method. The reference is classical MOC with 0.005 mm tracking step.

4.3. Computing Time

Due to the lack of optimization in the implementation of the new transverse quadrature, a direct
comparison of computing times with the classical MOC is unfeasible at the time of this writing.
Nevertheless, we may compare their algorithmic complexities, both in terms of number of operations and
tracking storage requirements. As far as the sweeping is concerned, the move to the macroband technique
affects only the treatment of the transmission equation.

The number of arithmetic operations and the size of the tracking data required per track sweep for the
macroband and the classical tracking techniques, based, respectively, on Eq. (7) and on Eqs. (8) and (9), are
compared in Table II.

Table II. Algorithmic complexities for the classical MOC and the new transverse quadrature method
(for nk > 1). r represents the average cost for flux repartition at section interfaces.

tracking technique exponentials multiplications additions tracking storage

classical MOC 1 2 2 1

macrobands 1 3 + nk + r 2 + nk 1 + nk + 2r

For nk = 0 both techniques are identical, with the exception that the macroband methods adds the extra
cost for flux redistribution.
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(a) PWR assembly geometry
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(b) Maximum relative error on absorption rate per region

Figure 5. Comparison of the maximum relative errors in the absorption rates per region versus the
tracking step for a typical rodded PWR assembly. Results obtained with the classical MOC and the
macroband method. The reference is classical MOC with 0.005 mm tracking step.

Because of its dependence on the regions shape and distribution throughout the domain, we are unable to
predict the exact value for the average computing cost r for flux redistribution. However, we can evaluate it
a posteriori, for a particular problem as:

r =
n̄sb

n̄reg
, (10)

where n̄sb is the average number of homogenous sub bands per section, and n̄reg is the average number of
regions intersecting a homogeneous sub band. A conservative value for the RBMK cell calculation shown
in figure 4 is r ' 0.6. This implies that with a first-order Taylor expansion the new technique requires
roughly 2.3 times the amount of operations and 3.2 times the amount of storage needed by the classical
MOC with the same tracking step ∆.

5. CONCLUSIONS AND PERSPECTIVES

We have developed and implemented a new tracking technique for the method of characteristics that
accounts for material discontinuities and uses a semi-analytical transverse quadrature formula. The
observed gain in precision compared to the classical MOC tracking confirms that it is the low precision of
the classical transverse integration that severely limits the accuracy of the MOC.

Our numerical examples show that macroband transverse quadrature gives equivalent results than the
classical MOC with tracking steps up to 5 times greater. It also guarantees monotonous convergence, even
for large values of the tracking step. A comparison of numerical cost and tracking storage requirements
shows promise that, with a properly optimized implementation, the macroband method can be nearly twice
as fast as the classical MOC.

Still, there remains the error introduced by the piecewise constant approximation for the transverse
variation of the angular flux. In future research we intend to investigate the use of a piecewise linear flux
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transverse expansion. The combination of this improved flux expansion with the macroband tracking
technique introduced in this work has potential for a further increase of the tracking step ∆ for a given
accuracy.
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Appendix: MacroBand Tracking in Closed Domains

A geometric domain that fills the entire space by successive replications (boundary translations, rotations
or symmetries) requires cyclic tracking in order to obtain the fluxes entering the domain. In this appendix
we outline the extension of the macroband tracking technique to deal with this case.

Cyclic tracking uses particular tracking directions and the transverse tracking for each direction is not done
over the full projection of the domain on the transverse direction but over a portion of it (see [4]), that we
shall call the effective tracking band. For example, for a rectangular domain of dimensions a× b with
translation boundary conditions, the cyclic tracking angles φ (angle of the projection of direction Ω on the
XY plane with the x axis) and the effective tracking band w are given by the formulas:

∃(m,n) ∈ N2 such that:

tanφ =
mb

na
, (11)

w =
a

m
.

Therefore, one could cover the effective tracking band with K macrobands of width ∆ = w/K. However,
in this case we have to make sure that the macrobands do not contain a vertix of the domain boundary. This
requires the additional constraint that the transverse projections of the vertices of the domain boundary
must belong to the transverse mesh that defines the macrobands. The example shown in Fig. 6 shows the
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case of the rectangle with translation boundary conditions for the tracking angle defined by m = 2 and
n = 1, as well as the corresponding effective band width. The set of trajectories defined by the band width
covers under translations the original rectangle. In the case shown in the figure there is only one vertex
along the effective band width in gray and the vertex projection lays on the boundary of the effective
tracking band (that covers the left side of the cell). However, it is possible (see [4]) to adopt any band width
that has the same area but not exactly on the same position, as illustrated by the dashed lines in Fig. 6. In
this case, the vertex projection lies within the tracking domain and must necessarily be part of the
transverse tracking mesh. When possible, a careful implementation may select an effective tracking band
for which all the vertices projections are on the boundary of effective tracking band and do not constrain
the transverse tracking mesh.

singular point

ψ
0
−

ψ
0
− cyclic band

Figure 6. Effective tracking band (in gray) for the case of a rectangle for a cyclic angle withm = 2 and
n = 3 in Eq. (11). The diagonal lines show the direction of projection for the vertices of the geometric
domain. An equivalent effective tracking band is also shown by the dashes lines.

Next, consider a cyclic macroband with its sections numbered in increasing order starting with the initial
section at the entering boundary. The fluxes exiting the k’th homogeneous sub band of a section are given
by Eq. (5):

ψ+
k =

∏
i

Tk,i︸ ︷︷ ︸
Tk

ψ−k,i +
∑

i

1− Tk,i

Σi
qi

∏
i′>i

Tk,i′︸ ︷︷ ︸
Qk

(12)

where the sum in i is over the consecutive regions that intersect homogeneous sub band k and Tk,i is the
transmission integral of sub band k across region i.

As indicated in Eq. 9, the fluxes entering the following section of the macroband are obtained by flux
redistribution. By denoting by ψ+

s the vector containing the fluxes exiting section s we have

ψ−s+1 = Rs ψ
+
s

= Rs Ts ψ
−
s +RsQs,

where Rs represents the redistribution matrix implicitly defined in Eq. 9, Ts = diag{Tk} is the
transmission matrix within section s and Qs stands for the sources in the different regions within the
section.

As for classical cyclic tracking we can recover the entering fluxes from the expression for the fluxes exiting
the last section of the macroband:

ψin = Tψin +Q, (13)
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where T and Q represent, respectively, the global transmission and source terms for the entire cyclic sweep
over the macroband:

T =
∏
s

Rs Ts,

Q =
∑

s

∏
s′>s

Rs′ Qs.

Matrix T and vector Q can be computed carrying out a sweep of the macroband with a unit entering flux.
Then, we use (13) to determine the entering fluxes and effectuate a new sweep to determine the final fluxes.

The computation of T involves matrices of variable size (up to the maximum number of sub bands per
section). However, the first and last flux redistribution matrices guarantee that T ends up being a n× n
matrix, where n represents the number of sub bands in the first section. Likewise, the computation of Q
involves matrices of different size, but the size of Q is n.
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