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Abstract— A systematic study of a multi-dimensional model
for particle dynamics in a granulation process is detailed. The
model accounts for three controlled variables: distributions in
particle size, moisture composition, and porosity. Controlla-
bility insights are obtained from sensitivity studies involving
the properties of the manipulated input: binder addition.
Discontinuities in a multi-regime kernel in the model lead to
bimodal particle attribute distributions.

I. INTRODUCTION

Granulation is a widely used chemical engineering pro-
cess in which small particles agglomerate together into
larger granules. In wet granulation processes, the coagu-
lation of particles is improved by the addition of a binder
liquid sprayed over an agitated powder in a tumbling drum
or pan. The particles are wetted by the binder and nucleate.
The resulting binder-coated granules can then collide and
stick to each other forming larger granules. These granules
can also compact and consolidate as the binder liquid is
brought to the surface of the aggregates due to the stirring
in the granulator. Particles may also break due to collision
with the other particles or the granulator walls during the
mixing. Thus, the main phenomena in granulation processes
are the granule wetting and nucleation, consolidation and
growth, and aggregation and breakage [1].

Granulation processes are widely used in many industries
such as pharmaceuticals, agricultural products and fertil-
izers, among others. Although they have been used and
studied over the last 50 years, such processes remain prob-
lematical, since they are often operated in a very inefficient
manner. Very small yields and large recycle ratios (typically
4:1, recycle:product) are often reported. This mainly comes
from the difficulty in designing and controlling granulation
circuits allowing maintenance of specified size ranges for
the granules. Thus, there are substantial opportunities to
improve process design, operation and control.

The most common way of describing the complicated
phenomena associated with particle growth and coagulation
is to use population balance models, as described in [2].
However, these models typically consist of first-order, par-
tial, integro-differential equations and their solution poses a
serious numerical challenge. Another difficulty is caused
by the difference in characteristic times for the growth
and coagulation of particles, resulting in the stiffness of
the Population Balance Equation (PBE). Generic solution
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techniques, such as finite difference, finite element and
spectral methods have been studied and compared with
respect to their efficiency to solve these PBEs by Mantzaris
et al. ([3], [4] and [5]).

II. METHODS

A. Population Balance Equation

The population balance model developed by Immanuel
and Doyle to describe the granulation process incorporating
nucleation, consolidation and coagulation is employed in
this work [6]. The granules are characterized by three
internal coordinates: solid volume (s), liquid binder vol-
ume (l), and gas-filled pores volume (g). The corresponding
population balance equation is given by:

∂

∂t
F (x, t) = − ∂

∂g

(
F (x, t)

dg

dt

)
− ∂

∂l

(
F (x, t)

dl

dt

)

+Rformation
aggre (x, t) − Rdepletion

aggre (x, t) (1)

where x = (s, l, g) represents the three internal coordinates,
and F (x, t) represents the population density function,
defined such that F (x, t) dx is the moles of granules of
solid volume between s and s+ ds, liquid volume between
l and l + dl, and gas volume between g and g + dg. The
partial derivative term with respect to t in the left hand side
accounts for the accumulation of the particles. The partial
derivative term with respect to g accounts for the consol-
idation phenomenon. Likewise, the partial derivative term
with respect to l accounts for the wetting of the granules
due to the spraying of binder liquid. Rformation

aggre (x, t) and
Rdepletion

aggre (x, t) respectively account for the gain and loss of
particles due to the aggregation phenomenon. The breakage
phenomenon has been neglected in this case.

The use of (s, l, g) coordinates facilitates the formulation
of this population balance equation, since the coagulation
phenomenon is additive with respect to these coordinates.
However, one can use the mapping given by equations (2)
and (3) to re-cast these coordinates as the radius (r),
moisture (m), and porosity (p) of the granules:⎧⎪⎪⎨

⎪⎪⎩
r =

(
3 (s+l+g)

4 π

) 1
3

m = l
s+l+g

p = l+g
s+l+g

(2)

⎧⎪⎨
⎪⎩

s = (1 − p) 4 π r3

3

l = m 4 π r3

3

g = (p − m) 4 π r3

3

(3)
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B. Model

The consolidation phenomenon accounts for the com-
paction of the granules due to the stirring in the granulator.
Therefore, it results in a decrease of the particle porosity
p, defined as p = l+g

s+l+g . This evolution is modeled
using empirical information, as shown in equation (4), and
simplified to equation (5):

dp

dt
= −c (p − pmin) (4)

dg

dt
= −c

s + l + g

s
[l + g − pmin (s + l + g)] (5)

where c is a constant depending upon the mixing parameters
in the granulator.

The wetting phenomenon accounts for the effects of the
binder fluid spray on the particles. It results in an increase of
the liquid volume of the granules. This evolution is modeled
through an equal repartition of the binder liquid addition
among all the granules, which leads to the wetting rate
expression shown in equation (6):

dl

dt
=

u

npart
=

u

NA

∫∫∫ xmax

x=xnuc
F (x, t) dx

(6)

where u is the binder spray flow, npart represents the total
number of particles in the granulator, NA is Avogadro’s
number, xnuc = (snuc, 0, 0) represents the minimal size of
a granule, and xmax = (smax, lmax, gmax) is the maximal
size of a granule.

The coagulation phenomenon is taken into account by the
formation and depletion rates Rformation

aggre and Rdepletion
aggre :

R
formation
aggre (x, t) = 1

2
∫∫∫ x−xnuc

x′=xnuc
c1β(x′, x − x′) F (x′, t) F (x − x′, t) dx′

(7)

R
depletion
aggre (x, t) = F (x, t)

∫∫∫ xmax
x′=xnuc

c1β(x′, x) F (x′, t) dx′ (8)

where xnuc and xmax are respectively the minimal and
maximal size of the granules as previously, and β(x′, x′′)
represents the coagulation kernel, i.e the rate of aggregation
of granules of internal coordinates x′ and x′′.

The coagulation kernel is computed using a mechanistic
approach, which is described in detail in [7], [6].

C. Numerical Solution

The numerical method described in [8] and [6] is used
in this study. The relative efficiency of this approach over
other methods in the literature is described in the original
reference. The technique is based on a discretization of the
particle size distribution on an arbitrary grid of ‘bins’ along
each one of the internal coordinates (s, l, g). In each bin,
the particles are assumed to be uniformly distributed — in
contrast to the majority of earlier methods, such as the pivot
techniques presented in [9] and [10], where the granules
are assumed to be concentrated at a single point in each
bin. However, a unique representative volume (mid-point) is
chosen in each bin to compute the size-dependant properties

(such as the consolidation rates defined in equation (5) and
the total volume of the PSD). With these assumptions, a
finer grid than usual is required to avoid excessive total
volume variation. A sufficient number of finite elements is
also required to cover the entire span of the PSD and prevent
backward propagation of errors.

At each time step, a first order Euler method is used to
update the PSD with respect to the wetting and consolida-
tion phenomena. To overcome the stiffness of the equations,
each time step is divided into four equal sub-intervals which
are used to update the PSD with respect to the coagulation
phenomenon, using a 5-stage predictor-corrector method
starting with a first order Euler method and progressively
increasing the order of integration.

III. RESULTS

The previously described mathematical model has been
used to study the sensitivity and the controllability of the
granulation process. The only manipulated variable defined
in this model is the binder addition flow u appearing in the
wetting rate defined by equation (6). However, one also can
indirectly influence the system through design parameters,
such as those which describe the stirring in the granulator.
A variation in the stirring method would for instance
modify the modeling constants c and u0 respectively used
to describe the compaction rate in equation (5) and the
coagulation kernel.

A. Binder Addition (case I)

In this first case, somewhat extreme values of the process
parameters are chosen to illustrate the interaction between
different phenomena involved in the granulation process.
The initial liquid volume of the powder is large whereas
the liquid cut-off volume is small (lini ≈ 1

16 lcut-off ).
This reduces the possible number of successive coagulation
events by allowing the granules to be stabilized after only
four coagulations. Moreover, the binder addition is constant
throughout the entire batch, allowing the granules to reach
tremendous moisture levels.

Tracking the final number of particles in the batch yields
insight to the number of successive coagulation events: each
successful coagulation decreases the number of granules
by one. Hence, since the duration of the batch is fixed, a
small number of particles at the end of the batch indicates
the occurrence of numerous coagulation events, whereas a
growth of particles over the cut-off volume prevents them
from coagulating and therefore reduces the final number
of particles. The evolution of the final total number of
particles can be seen on figure 1a. This figure shows an
interesting staircase-shaped evolution of the final number of
particles. During the continuous steps, the final total number
of particles decreases when the binder flow increases. This
is easily understandable considering that the coagulation
kernel amplitude increases with the solid and liquid vol-
umes.
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Fig. 1. Simulation of a batch with small cut-off volumes and large initial
volumes. Constant binder addition flow throughout the entire batch. Initial
number of particles: 10−15 mol. (a) Evolution of the final total number
of particles in function of the binder addition flow. (b) Total liquid volume
absorbed per particle during the batch due to binder liquid spray.

However, more interpretation is needed to explain the
discontinuities of the curve. The coagulation phenomenon
is intrinsically of a discrete nature: if all the particles
have the same initial volume, the volume of the particles
resulting from coagulation will always be a whole multiple
of the initial volume. One can thus expect the PSD to
present local maxima for all the whole multiples of the
initial size. In particular, numerous granules will result from
three successive coagulation and thus be eight times as
big as the initial volume. One can calculate the binder
liquid volume missing to these granules to reach the liquid
cut-off volume. One can also compute the total volume
absorbed per particle during the batch (figure 1b). These
two curves cross exactly for the same binder addition flow
that caused the discontinuity of the final number of granules
in figure 1. Thus, for this value of the binder addition flow,
a non-negligible part of the Particle Size Distribution is
stabilized at the same time, causing a sudden decrease in
the coagulation.

This result leads to the conclusion that two antagonistic
phenomena are involved in granulation processes:

1) the wetting of the particles improves the coagula-
tion by shifting the granules towards the high liquid
volumes, in an area where the coagulation kernel is

higher
2) an excessive binder addition leads to the stabilization

of the granules.
The extremely low number of successive coagulation events
allowed in this case leads to the emphasis of the discrete
nature of the stabilization phenomenon, thus allowing one
to distinguish between these two phenomena.

B. Binder Addition (case II)

In the present section, the system response to a rectan-
gular pulse of binder addition is studied. The simulation
parameters used are more realistic, with a small initial size
of the powder particles and a large cut-off size. The batch
length is tend = 2000 s. The liquid binder addition flow
profile is a rectangular pulse during ∆tpulse = tend

5 =
400 s.

In a first simulation, the pulse of binder addition occurs
at the beginning of the batch, and is given by:

u(t) =

{
upulse if 0 � t � ∆tpulse

0 if ∆tpulse < t � tend
(9)

The evolution of the final number of particles is shown
in figure 2. As seen previously, the moderate binder ad-
dition flows help improving the coagulation phenomenon,
whereas excessive binder addition leads to stabilization of
the granules and causes the final total number of particles to
increase. However, in this case, the effect of the stabilization
phenomenon on the final number of granules has been
obscured by the large number of coagulations.
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Fig. 2. Final total number of particles in function of the amplitude of a
rectangular pulse of binder addition at the beginning of the simulation.
(initial number of particles: 10−15 mol).

In order to study the response of the system in terms
of the particle size distribution, it is useful to reduce the
number of dimensions of the PSD. This can be done by
integrating the PSD along some of the coordinates:

Fs,l(s, l, t) =
∫ gmax

g=0
F (s, l, g, t) dg

Fs(s, t) =
∫ lmax

l=0

∫ gmax

g=0
F (s, l, g, t) dg dl

Fl(l, t) =
∫ smax

s=snuc

∫ gmax

g=0
F (s, l, g, t) dg ds

Fg(g, t) =
∫ smax

s=snuc

∫ lmax

l=0
F (s, l, g, t) dl ds

where Fs, Fl, and Fg are the population density functions
with respect to the three coordinates s, l, and g. Thus
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Fs(s, t) ds represents the moles of granules of solid volume
between s and s+ds at instant t. Likewise, Fs,l(s, l, t) ds dl
represents the moles of granules of solid volume between
s and s + ds and liquid volume between l and l + dl at
instant t.

The level curves of the function Fs,l illustrate the shape
of the PSD. Figure 3a shows the level curves of Fs,l at
final instant tend = 2000 s. without any binder addition.
Note that the PSD spread in a diagonal direction from the
initial volume of the powder particles at the lower left corner
of the figure. This is due to the fact that the coagulation
phenomenon is additive with respect to the solid and liquid
volumes. One can define a “direction of spreading” of the
PSD by considering the difference between two coagulating
particles and the resulting granule as explained in figure 4: if
two particles x1 and x2 coagulate, the resulting particle will
be x = (s1 +s2, l1 + l2, g1 +g2). The averaged coagulating
particle is x̃ = ( s1+s2

2 , l1+l2
2 , g1+g2

2 ). Thus, the direction of
spreading is d0 = x − x̃ = 1

2 (s1 + s2, l1 + l2, g1 + g2).
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Fig. 3. Level curves of the integrated PSD Fs,l at final instant tend =
2000 s. The thick line represents the cut-off volumes. The binder addition
profile is a rectangular pulse during the first 400 s of the batch. (a) No
binder addition: upulse = 0. (b) upulse = 10−8 mm3.s−1

Figure 3b shows the same level curves for a binder
addition pulse at the beginning (upulse = 10−8 mm3.s−1).
Note that the binder addition caused the PSD to spread in
a different direction, closer from the vertical, liquid volume
axis. This is due to the fact that the binder addition occurs at
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Fig. 4. Definition of the “direction of spreading” of the PSD.

the beginning of the batch, during the coagulation. Thus, if
two particles x1 and x2 coagulate, the resulting particle will
be x = (s1+s2, l1+l2+

upulse

npart
, g1+g2), and the direction of

spreading is d1 = d0+
upulse δt

npart
(0, 1, 0), where δt represents

the characteristic time of coagulation (Figure 4).
The study of the shape of the integrated PSD Fs and Fl

thus shows a sharpening of the PSD along the solid and gas
volume coordinates (Figures 5a and 5c), and a widening of
the PSD along the liquid volume coordinate (Figure 5b).

One can also study the system response to a pulse of
binder addition occurring in the middle or at the end of the
batch. In this latter case, the binder addition profile is given
by:

u(t) =

{
0 if 0 � t < tend − ∆tpulse

upulse if tend − ∆tpulse � t � tend
(10)

As previously, the final number of particles shows a first
decrease followed by an increase as the binder addition
flow becomes excessive (Figure 6). The level curves of
the integrated PSD Fs,l reveal that in this case, the whole
PSD has been shifted towards the high liquid volumes
(Figure 7). This can be explained by the fact that the binder
addition begins at the end of the batch, at a stage when
most of the particles have coagulated several times already.
Thus the PSD spreads at first in the direction d0 until the
beginning of the binder addition. After this, the direction
of spreading mostly shifts the PSD upwards (i.e., towards
higher volumes).

Also note the difference in the orders of magnitude for the
binder addition flows: 10−8 mm3.s−1 seems to be a good
scale to study the binder addition at the beginning, whereas
the binder addition at the end of the batch has to be studied
with much smaller flows, such as 10−10 mm3.s−1. This is
due to the fact that the wetting rate defined in equation (6)
is inversely proportional to the number of particles, which
is smaller at the end of the batch.

C. Coagulation Kernel Amplitude

Although the binder addition flow is the only manipulated
variable explicitly incorporated in the model, one can study
the sensitivity of the system with respect to various model
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Fig. 5. Integrated PSDs (Fs, Fl, and Fg) for different amplitudes of
the binder addition pulse at the beginning of the batch. The dashed line
represents the cut-off volume.
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Fig. 6. Final total number of particles in function of the amplitude of
a rectangular pulse of binder addition at the beginning of the simulation.
(initial number of particles: 10−15 mol).

0.5 1 1.5 2

x 10
−11

1

2

3

4

5

6

7

8
x 10

−12

Solid Volume (mm³)

Li
qu

id
 V

ol
um

e 
(m

m
³)

Level curves of the final PSD (t=2000s.)

(a)

0.5 1 1.5 2

x 10
−11

1

2

3

4

5

6

7

8
x 10

−12

Solid Volume (mm³)
Li

qu
id

 V
ol

um
e 

(m
m

³)

Level curves of the final PSD (t=2000s.)

(b)

Fig. 7. Level curves of the integrated PSD Fs,l at final instant tend =
2000 s. The thick line represents the cut-off volumes. The binder addition
profile is a rectangular pulse during the last 400 s of the batch. (a) No
binder addition: upulse = 0. (b) upulse = 2 × 10−10 mm3.s−1

parameters, since they can be indirectly affected by design
parameters, such as the type of stirring device, the stirring
rate, or the number and location of the sprinklers.

In the present section, the sensitivity of the system is
studied with respect to the amplitude of the coagulation
kernel, determined by the model parameter c1. The coagu-
lation kernel amplitude c1 may be influenced by the stirring
parameters.

The level curves of the final PSD shown in figure 8
reveal the progressive appearance of multi-modal character
in the particle size distribution. As noted previously, the
first mode corresponds to the initial size of the particles.
The other modes correspond to particles that are just
above the liquid cut-off volume. This phenomenon can
also be seen on the single-coordinate distributions: with
small coagulation kernel amplitude, the particle distribu-
tions are very sharp, since no coagulation creates big
particles. As the coagulation kernel amplitude increases, the
distributions widen until they reach the cut-off volumes,
for c1 � 4 × 1011 mm3.mol−1.s−1. After this point, the
distribution cease widening, and begin changing shape. The
solid volume distribution shows the progressive appearance
of several modes below the cut-off volume. On the other
hand, the liquid volume distribution reveals the appearance
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of only one other mode, just above the cut-off volume. The
gas volume distribution remains unimodal, as before.

IV. SUMMARY

A systematic analysis of the sensitivity of a multi-
dimensional population balance model to parameters reflect-
ing manipulated inputs (binder addition, stirring characteris-
tics) reveals the controllability of the evolving distributions.
It has been shown that the binder liquid flow directly
influences the orientation of the final PSD; while the stirring
parameters indirectly influence the final PSD and lead to the
appearance of a multimodal distribution.

The results point to the limitations of reachable distribu-
tions in size, moisture composition, and porosity using the
manipulated inputs. Future studies will address the design
of controllers to regulate the particle distributions in the
regions described in this study.
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Fig. 8. Level curves of the integrated PSD Fs,l at final instant tend =
2000 s. The thick line represents the cut-off volumes. The binder addition
profile is a rectangular pulse during the first 400 s of the batch; upulse =
10−8 mm3.s−1. (a) c1 = 3 × 1011 mm3.mol−1.s−1. (b) c1 = 7.5 ×
1011 mm3.mol−1.s−1. (c) c1 = 9 × 1011 mm3.mol−1.s−1
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