

Fine Flux Integration Methods for the SPN Solver in Cocagne

D. Couyras, F. Févotte, L. Plagne

M&C 2013, Sun Valley, ID, USA

2-step calculation scheme

assembly calculation

- 2D Assembly calculation
 - APOLLO2 REL2005
 - ► 281 energy groups
 - very fine spatial discretization
 - Σ: homogenized & collapsed cross sections

2-step calculation scheme

- 2D Assembly calculation
 - very fine spatial discretization
- 3D Core calculation
 - COCAGNE SPN solver
 - 2 energy groups
 - ► coarse spatial mesh M^c (1 × 1 to 4 × 4 meshes/ass.)
 - ► *k_{eff}*: multiplication factor
 - φ^c , **j**^c: coarse flux, current

2-step calculation scheme

- 2D Assembly calculation
 - very fine spatial discretization
- 3D Core calculation
 - ► coarse spatial mesh M^c (1 × 1 to 4 × 4 meshes/ass.)
 - φ^c , **j**^c: coarse flux, current
- Post-treatment
 - ▶ fine spatial mesh *M^f* (pin-by-pin)
 - I^f: pin-by-pin-averaged flux
 - ► A^f: fine shape function
 - τ^{f} : pin-by-pin reaction rate

Outline

Context

- DIABOLO SPN Solver
- Present fine flux integration method
- New Fine Flux Integration methods
 - Poisson
 - StrawHat
- Real-World results
 - UOX cases
 - UOX/MOX interfaces
- Conclusions Perspectives

COCAGNE's SPN solver: DIABOLO

Equations and implementation

- Cartesian solver, for the Simplified Transport (SPN) equations
- ♦ SP₁ equations:

$$\begin{cases} \frac{1}{D}\mathbf{j} + \nabla\varphi = \mathbf{0},\\ \operatorname{div}(\mathbf{j}) + \Sigma\varphi = s. \end{cases}$$

Discretized system with RT_k FEM:

$$\begin{cases} \mathbb{A}_k J - \mathbb{B}_k \Phi = 0, \\ {}^t \mathbb{B}_k J + \mathbb{T}_k \Phi = S_k. \end{cases}$$

4/19

Direct flux integration method Principle

- Direct integration of the coarse flux
 - Example of a 1D RT₁ coarse flux:

Direct flux integration method Principle

- Direct integration of the coarse flux
 - Example of a 1D RT₁ coarse flux: I_i^f

$$= \frac{1}{|\mathcal{M}_i^f|} \int_{\mathcal{M}_i^f} \varphi^c(x) \, dx$$

Direct flux integration method Principle

- Direct integration of the coarse flux
 - Example of a 1D RT₁ coarse flux: I_i^t

$$= \frac{1}{|\mathcal{M}_{i}^{f}|} \int_{\mathcal{M}_{i}^{f}} \varphi^{c}(x) dx$$

$$= \frac{1}{|\mathcal{M}_{i}^{f}|} \int \varphi^{c}(x) \underbrace{\mathbb{1}}_{\mathsf{RT}_{0} \text{ basis function}} dx$$

 \Rightarrow I_i^f can be identified to an RT_0 flux discretization on \mathcal{M}^f

Let us try and solve the following fine RT_0 SP₁ system:

$$\begin{cases} \mathbb{A}_0^f J - \mathbb{B}_0^f \Phi = 0, \\ {}^t \mathbb{B}_0^f J + \mathbb{T}_0^f \Phi = S_0^f. \end{cases}$$

5/19 **COP**

Fine Flux Integration

1. Introduction

- 2. Fine Flux Integration Poisson StrawHat
- 3. Real-World Results
- 4. Conclusions Perspectives

Fine system resolution

Solve the fine SP₁ RT₀ system:

$$\begin{cases} \mathbb{A}_0^f J - \mathbb{B}_0^f \Phi = 0, \\ {}^t \mathbb{B}_0^f J + \mathbb{T}_0^f \Phi = S_0^f. \end{cases}$$

Question:

Could we avoid entirely solving this using the coarse solution (Φ^c, J^c) ?

- ▶ project/interpolate (Φ^c, J^c) on M^f to initialize the fine solver → open the way to multi-level/multigrid methods; see the perspectives.
- ► solve only subset of the problem at the fine level → solutions explored in the following.

Current-based integration methods Principle

Idea:

- project the current only, and treat it as a known source term;
- ignore the last set of equations:

$$\mathbb{B}_0^f \ \Phi^f = \mathbb{A}_0^f \ J^f_{\text{proj}}$$

- Advantage:
 - B does not contain any physical data.

Problem:

this system is not square!

Current-based integration methods Principle

Idea:

- project the current only, and treat it as a known source term;
- ignore the last set of equations:

$$\mathbb{B}_0^f \Phi^f = \mathbb{A}_0^f J_{proj}^f$$

- Advantage:
 - B does not contain any physical data.
- Problem:
 - this system is not square!

Poisson method

• Idea: left-multiply the equation by ${}^t\mathbb{B}$:

 $\mathbb{B} \Phi = \mathbb{A} J_{proj}$

Poisson method

• Idea: left-multiply the equation by ${}^t\mathbb{B}$:

 ${}^{t}\mathbb{B} \mathbb{B} \Phi_{poisson} = {}^{t}\mathbb{B} \mathbb{A} J_{proj}$

- Advantages:
 - ▶ ${}^{t}\mathbb{B}\mathbb{B}$ is the classical finite-differences discretization of the Laplace operator;
 - there exist very efficient methods to solve it.

For example, in 1D:

$$\mathbb{B} = \begin{pmatrix} 1 & & \\ -1 & \ddots & \\ & \ddots & 1 \\ & & -1 \end{pmatrix} \qquad t \mathbb{B} \mathbb{B} = \begin{pmatrix} 2 & -1 & & \\ -1 & \ddots & \ddots & \\ & \ddots & \ddots & -1 \\ & & -1 & 2 \end{pmatrix}$$

9/19

"StrawHat" method

Idea: ignore the last equation in the system:

$$\mathbb{B} \Phi = \mathbb{A} J_{proj}$$

"StrawHat" method

Idea: ignore the last equation in the system:

$$\tilde{\mathbb{B}} \; \Phi_{\textit{strawhat}} = \widetilde{\mathbb{A} \; J_{\textit{proj}}}$$

Advantage:

 ^B is lower triangular.

Real-World Results

1. Introduction

2. Fine Flux Integration

3. Real-World Results UOX cases UOX/MOX interfaces

. Conclusions – Perspectives

Real-World results: 3D PWR core computation

Spatial discretization:

	(x, y)	Ζ
Fine mesh \mathcal{M}^{f}	17 imes 17 cells/ass.	40 cells
Computation mesh \mathcal{M}^{c}	(1 imes 1) ightarrow (8 imes 8)	40 cells
Discretization order	$RT_0 \to RT_2$	RT_2

Physical data: 2-group cross-sections, homogenized at the assembly level.

- 2 datasets coming from real 900 MWe PWR loading patterns:
 - UOX only
 - UOX + MOX
- Reference calculation:
 - fine SP₁ RT₂ computation
 - quantity of interest: fine power production rates

$$P^f = \sum_{g} \kappa \Sigma_f(g) \ l^f(g)$$

 $e_{\infty}^{p} = rac{\|P^{f} - P^{f, ref}\|_{\infty}}{\|P^{ref}\|_{\infty}}$

Real-World results – PWR with UOX loading pattern Accuracy vs. discretization

Poisson > **StrawHat** > **Direct Integration**

Real-World results – PWR with UOX loading pattern Accuracy vs. discretization

Poisson > **StrawHat** > **Direct Integration**

 $RT_2 > RT_1 > RT_0$

Poisson > **StrawHat** > **Direct Integration**

Poisson > **StrawHat** > **Direct Integration**

 $RT_2 > RT_1 > RT_0$

Real-World results

1D flux cross-sections

UOX loading pattern

Real-World results

1D flux cross-sections

UOX-MOX loading pattern

Fine cell index

Accuracy vs. computing time

Poisson ?!? StrawHat > Direct Integration – Not very clear...

Accuracy vs. computing time

 $\label{eq:strawHat} \begin{array}{l} \mbox{Poisson out of the game:} \\ \mbox{StrawHat} > \mbox{Direct Integration and } RT_2 > RT_1 > RT_0 \mbox{ (in our area of interest)} \end{array}$

Fine Flux Integration for EDF's SPN Solver

16/19 **CODE**

Conclusions – Perspectives

1. Introduction

- 2. Fine Flux Integration
- 3. Real-World Results
- 4. Conclusions Perspectives

Conclusions

- 2 new methods for Fine Flux Integration in COCAGNE
 - based on fine current interpolation

Assessment on 3-D PWR core calculations, from the fine flux viewpoint:

- higher RT_k orders are always better (accuracy vs. time)
- ▶ for smooth enough flux distributions: Poisson > StrawHat > Direct Integration
- for discontinuous flux distributions (e.g. UOX/MOX interfaces): Poisson not so good; StrawHat looks like a good candidate.

Perspectives

Study of non-uniform computation meshes:

- ► assessment of the methods on the *4 × 4* mesh;
- mesh refinement around UOX/MOX interfaces for the Poisson method.

Mid-term:

- Extension to other boundary conditions (symmetry, ...)
- Extension to SP3/SP5.

Science fiction:

- Automatic selection between Poisson and StrawHat.
- Use the new flux/current projections for multilevel/multigrid methods.

Thank You!

Questions?

- Running example for all methods in this talk:
 - Poisson's equation with sinusoidal source term
 - RT₀ discretization
 - \mathcal{M}^c : 10 × 10 mesh cells
 - \mathcal{M}^{f} : 20 × 20 mesh cells
- Coarse calculation results:

Direct Integration

StrawHat Method

Poisson Method

Methods comparison

Analytical benchmark

Errors w.r.t. the reference method (fine problem resolution):

	DI	StrawHat	Poisson
$\ e^{arphi}\ _{rel,\infty}$	8.2%	4.3%	0.69%
$\ e^{\varphi}\ _{rel,2}$	11%	5.6%	0.68%

Results:

- Poisson > StrawHat > DI
- DI and StrawHat produce oscillatory errors

 interpolation problems
- ► Poisson produces a smooth error → balance error.

Real-World results

1D flux cross-sections

UOX-MOX loading pattern

Fine cell index

Real-World results

1D flux cross-sections

UOX-MOX loading pattern $\begin{array}{c} \mbox{Error on fine integrals e^{0} (arb. units) 0 -100 $-100 -10 Error on fine integrals e^g (arb. units) 1200 1000 800 600 400 200 0 -200 -400 DI STR DI -600 STR -800 POI POI -1000 80 80 51 51

UOX loading pattern

Fine cell index

Fine cell index

edf 26/

Poisson: not robust...

Poisson: not robust...

 $RT_2 > RT_1 > RT_0$

Accuracy vs. computing time

Poisson \simeq **StrawHat** > **Direct Integration** – **Even less clear...**

Accuracy vs. computing time

Poisson \simeq StrawHat > Direct Integration – Even less clear...

Accuracy vs. computing time

 $\mathsf{RT}_2 > \mathsf{RT}_1 > \mathsf{RT}_0$

Accuracy vs. computing time

 $\begin{array}{l} \mbox{Poisson out of the game:} \\ \mbox{StrawHat} > \mbox{Direct Integration and } \mbox{RT}_2 > \mbox{RT}_1 > \mbox{RT}_0 \mbox{ (almost always)} \end{array}$

edf

28/

StrawHat Method

StrawHat Method

