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ABSTRACT

As part of its activity, EDF R&D is developing a new nuclear core simulation code named COCAGNE.
This code relies on DIABOLO, a Simplified PN (SPN) method to compute the neutron flux inside the core
for keff eigenvalue problems. In order to complete complex simulations involving a large number of suc-
cessive eigenvalue calculations within acceptable CPU times, the DIABOLO solver uses computational
meshes that contain a restricted number of cells (e.g. 4 × 4 cells per assembly). Solutions obtained on
these relatively coarse computational meshes are then spatially interpolated to obtain physical quanti-
ties such as neutron production rates on finer meshes (e.g. pin-by-pin power production). This paper
describes two novel methods, named Strawhat and Poisson, that allow the neutron flux to be integrated
over fine mesh cells. Unlike the original method used in COCAGNE, these new methods compute accu-
rate fine flux integrals trough the interpolation of the current DOFs of DIABOLO’s mixed dual RTk finite
elements. Assessed on a set of 3-D PWR realistic core configurations, these methods are shown to bring
about significant improvements over the original integration scheme: for smooth enough flux distribu-
tion, the Poisson method improves the pin-by-pin production rates accuracy by as much as one order of
magnitude.

Key Words: SPN (Simplified Transport); Fine Flux Integration; Fine Power Reconstruction; DIABOLO.

1. INTRODUCTION

As operator of nuclear power plants, EDF performs many simulations of nuclear reactor cores in the pro-
cesses of either reactor operation or design. Currently under development at EDF R&D, the COCAGNE

nuclear reactor core simulation system aims at meeting this need. As a convenient trade-off between accu-
racy and numerical complexity, the Simplified PN (SPN) approximation provided by the DIABOLO∗ solver [1]
is frequently used in neutron transport simulations.

In order to complete complex simulations involving a large number of successive eigenvalue calculations
within acceptable CPU times, the DIABOLO solver uses computational meshes that contain a limited number
of cells. Based on relatively coarse computational meshes, DIABOLO’s neutron flux solutions are spatially
interpolated on finer meshes to evaluate physical quantities such as power production rates at the pin-cell
level. This paper describes two novel methods dedicated to this interpolation process, that produces neutron
flux integrals on fine mesh cells. Unlike the original method, which only uses the flux Degrees of Free-
dom (DOFs) of DIABOLO’s RTk mixed finite elements discretization scheme, the two methods introduced in
this paper are based on the current DOFs. At the present time the proposed new fine integration methods are
restricted to SPN eigenvalue calculations with null flux boundary conditions.

The context of this paper is described in section 2, which introduces the 2-step approach used for the EDF

calculation scheme. Section 3 briefly presents the SPN equations and their numerical solution. Based on
∗DIABOLO is the new name of the COCAGNE platform SPN solver.
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these equations, section 4 describes the numerical derivation of the two novel flux integration methods
and section 5 illustrates them on a simple analytical case. Section 6 details the experimental set-up used
to study the numerical accuracy of the fine flux integrals and the production rates as a function of the
computation CPU time. Two realistic 3-D PWR loading patterns are used to assess the efficiency of the fine
flux integration (FFI) methods. Section 7 concludes the paper.

2. THE 2-STEP EDF CALCULATION SCHEME

The future EDF calculation scheme is based on a standard 2-step approach. The first step consists in com-
puting few-group cross-section libraries thanks to assembly calculations performed with a 2-D deterministic
transport code. The second step deals with simplified transport (SPN) 3-D calculations of the whole reactor
core using the data computed at the first stage.

The assembly calculation stage consists in solving the transport equation with a fine discretization in space
and energy. The transport calculations are based on the 2-D deterministic LWR assembly calculation scheme
REL2005 [2] which is validated by the CEA. The 2-D lattice code used for this purpose is APOLLO2 [3]
developed by the CEA with the support of EDF and AREVA. The multi-group cross-section library associated
with the REL2005 scheme uses the SHEM 281-group energy mesh [4]. Isotopic cross-sections gathered in
the multi-group library used by APOLLO2 are mainly derived from the JEFF3.1 punctual evaluations.

The assembly calculation produces cross-sections which are collapsed to two energy groups and spatially
homogenized. These cross-sections are then used in the 3-D core calculation, which consists in solving
the simplified transport (SPN) equations with two energy groups and a coarse Cartesian spatial mesh. This
resolution is performed by the DIABOLO solver in the COCAGNE platform.

For the sake of simplicity, only full assembly homogenization will be discussed here, but any homoge-
nization coarser than the pin-by-pin assembly structure requires a ”dehomogenization” process in order to
reach pin-by-pin production rates for core calculation. Pin-by-pin reaction rates are reconstructed using the
following formula:

τ fi = Σf
i I

f
i A

f
i ,

where superscripts f and subscripts i indicate that these quantities are computed on cell i of the fine pin-by-
pin mesh, τ is a reaction rate, Σ is the associated macroscopic cross-section. Af

i is a form factor resulting
from the assembly calculation and representing the amplitude of the flux in pin i within an assembly. Ifi is
produced by the SPN calculation and represents the integral of the flux over the fine mesh cell i.

The objective of this paper is to develop more accurate methods for the computation of the fine flux inte-
grals Ifi which appear in the formula.
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3. THE SPN METHOD

In the following, fine flux integration parameters will be denoted as follows:
Mc coarse computational mesh for the SPN solver,
Φc and Jc arrays storing degrees of freedom (DOFs) for the flux and current solutions to the SPN RTk

calculation onMc,
ϕc and jc functions associated to Φc and Jc in the RTk basis,

Mf fine mesh on which flux integration will be performed.

More generally, the following conventions will be used throughout this document:
– lower-case letters for functions (e.g. ϕ and j for the flux and the current),
– upper-case letters for arrays of discrete values (e.g. Φ and J for vectors of DOFs),
– double-stroked letters for matrices (e.g. A).

The Simplified PN method described in [5] leads to the solution of a system ofN+1 equations which can be
seen as (N +1)/2 coupled diffusion equations where the vector functions ji represent the current unknowns
and the scalar functions ϕi represent the flux unknowns:


2i+ 1

4i+ 1
div ji(r) + Σa,2iϕi(r) = Sϕ

i (r)− 2i

4i+ 1
div ji−1(r),

2i+ 1

4i+ 3

−−→
gradϕi(r) + Σa,2i+1(r)ji(r) = Si(r)− 2i+ 2

4i+ 3

−−→
gradϕi+1(r).

(1)

In our implementation, each diffusion system is solved spatially by using the mixed dual finite element
RTk described in [6]. With this element, we get a continuous current approximation of order k + 1 and
a discontinuous flux approximation, of order k, which is well suited to describe strong flux variations at
interfaces. In this paper, computations are made with RT0, RT1 and RT2 elements in a 3-D Cartesian mesh.
If we exclude outcoming current Degrees of Freedom (DOFs), these elements have respectively 4, 32, and
108 DOFs per cell. For the RT0 element, there are 1 DOF for the scalar unknown and 3 incoming DOFs for
the vector unknowns as shown in Figure 1.

Jx
0 Jx

1

Φ0 Jy
0

Jy
1

Jz
0

Jz
1

Figure 1: Degrees of freedom for the RT0 element.

Flux and current basis are chosen in order to obtain a very sparse matrix system without direction coupling
term in matrix A: (

A −B
BT T

)(
J
Φ

)
=

(
SJ
SΦ

)
. (2)
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4. FINE FLUX INTEGRATION METHODS

Denoting by ϕf an approximated neutron flux, the relevant quantities in our study are the fine flux integrals

Ifi =

∫
Mf

i

ϕf (r) dr, ∀Mf
i ∈M

f , (3)

where the mesh cells inMf are denoted byMf
i , and r = (x, y, z) is the space variable. All the methods

presented in the following aim at defining a fine flux approximation ϕf as accurate as possible to be injected
into eq. (3).

4.1. Reference Method

Fine flux integrals Ifi should ideally be computed using the exact solution ϕ to the SPN problem. For the
sake of simplicity, we consider in the following only SP1 (i.e. diffusion) problems of the form:

1

D
j +∇ϕ = 0,

div(j) + Σϕ = sϕ,

(4)

(5)

where D denotes the diffusion coefficient, Σ represents the total macroscopic cross-section, and sϕ denotes
the flux source term.

The exact flux being difficult to obtain, a practical way to obtain a flux approximation consistent with the
required spatial resolution consists in solving the discrete SPN system on a spatial mesh at least as fine as the
pin-by-pin meshMf : Af

k J
f
spn,rtk

− Bf
k Φf

spn,rtk
= 0,

Bf
k J

f
spn,rtk

+ Tf
k Φf

spn,rtk
= Sf

ϕ,k,

(6)

(7)

where Af
k , Bf

k and Tf
k are the standard SPN matrices on fine mesh Mf with finite elements RTk, Φf

spn,rtk

and Jf
spn,rtk

respectively represent the arrays of DOFs for the flux and the current. The function ϕf
spn,rtk

associated to Φf
spn,rtk

can then be used in equation (3), yielding reference values for fine flux integrals Ifi .
This is the method used as a reference in our study.

4.2. Direct Integration Method

The Direct Integration (DI) method was originally used in COCAGNE. It consists in using the natural flux
decomposition on the RTk basis to compute averaged values on fine meshes. Using the above notations, this
corresponds to taking ϕf

DI = ϕc in eq. (3).

For example, if the SPN resolution was done with an RT0 discretization, the flux is naturally represented by
a staircase function on the mesh cells; this piecewise constant approximation is used to compute fine flux
integrals Ifi (see fig. 2c).

However, such a method does not appear to be very optimal as far as the RTk mixed finite elements discretiza-
tion is concerned. With an RTk discretization, fluxes are indeed developed in a basis of order k polynomials,
whereas the basis used for currents contains order k + 1 polynomials. Only using flux DOFs in the fine flux
integration method therefore completely ignores a large quantity of data contained in the current DOFs.
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4.3. Methods based on Current Projection

Following the above discussion, it seems that more accurate fine flux integrals could be obtained by inter-
polating currents on the fine mesh in order to gain one polynomial order in the flux representation. Methods
presented in section 4.3 are based on this idea.

We define the fine current jf as the L2 orthogonal projection of jc on the fine meshMf . In this context, the
fine flux reconstruction method now aims at using jf to produce as good an approximation of ϕf as possible.
As already noted in section 4.1, the (ϕf , jf ) pair would ideally be as close as possible to the solution of SPN

problem (4)–(5).

It is worth noting that, when discretizing these equations using RT0 finite elements on fine meshMf , the
flux is projected on a basis of cell-wise constant functions. In this case, coefficients stored in the DOFs
array Φf

spn,rt0
therefore exactly correspond to fine flux integrals Ifi . The fine flux integration problem can

thus be seen as the approximated solution of the SPN RT0 problem on fine meshMf : Af
0 J

f − Bf
0 Φf = 0,

tBf
0 J

f + Tf
0 Φf = Sf

ϕ,0,

(8)

(9)

where notations are consistent with those of equations (6)–(7). For the sake of readability, when not ex-
plicitly mentioned it will always be assumed in the following that the RT order is 0, and indices will be
dropped.

Since fine currents have been obtained through coarse currents projection on fine meshMf , and are there-
fore not considered unknowns of the problem, it is clear that the above system – which now only has flux
unknowns – is overdetermined, meaning that some of the equations have to be dropped in order to find a
solution. This can be done by only solving the current equation (8)†. We will thus consider the following
fine flux equation:

Bf Φf = Af Jf (10)

where A and B are the SPN RT0 matrices, Jf is the projected current on RT0 basis functions on fine meshMf

and is considered to be known (through the current projection), and Φf is the unknown flux, identified to
fine flux integrals Ifi since it is developed on RT0 basis functions.

However, equation (10) still remains overdetermined: its number of unknowns is the number of flux DOFs,
while its number of equations is the number of current DOFs. It will thus need yet another transformation –
and approximation – to be solved. While there exist numerous ways of eliminating constraints in this system,
we chose to investigate two methods which are described in the following paragraphs. Before entering into
more details about these methods, we can sum up current projection-based methods by the following steps:
(i) compute Jf by projecting coarse current jc on the RT0 basis associated to fine mesh Mf , (ii) build
matrices Af and Bf associated to the RT0 discretization of the SPN problem onMf , (iii) compute a fine flux
array Φf approximately fulfilling equation (10). Coefficients stored in this array will then be identified to
fine flux integrals If .

†This could also be seen as the integration of a weak Fick’s Law: j = −D∇ϕ, allowing the neutron flux to be deduced from
the current.
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4.3.1. Poisson Method

A first way of transforming linear system (10) consists in left-multiplying it by tBf , yielding the square
system

tBfBfΦf
poisson = tBfAfJf , (11)

where matrix tBfBf exactly corresponds to the standard discretization of the Laplace operator in dimen-
sion D with a (2D + 1)-point stencil, with homogeneous Dirichlet boundary conditions. This is of notable
interest since this system thus corresponds to the discrete Poisson equation (hence the method name), for
which very fast and robust resolution methods [7] are available.

The main characteristic of this method is its smoothing effect. Indeed, provided that the right-hand side is
sufficiently smooth, obtained fluxes correspond to the RT0 discretization of a twice weakly differentiable
function in all directions (figure 2e).

However, left-multiplying equation (10) by tBf can raise problems, insofar as this matrix has non-zero
nullity. The solution of equation (11) is thus not necessarily solution to problem (10). However, the kernel
of matrix tBf is composed of constant vectors, so that homogeneous Dirichlet boundary conditions should
actually enforce in practice the correctness of the solution. Further work should be done to check the validity
of the method for other types of boundary conditions.

4.3.2. StrawHat Method

Another way of transforming linear system (10) consists in taking advantage of the structure of the matrices
involved. Indeed, for a spatial problem with D dimensions, matrices A and B can be decomposed into
directional blocks:

A =

 Ax

Ay

Az

 , tB =
(
tBx

tBy
tBz

)
, tBd =


1

−1
. . .
. . . 1
−1

 ,

where blocks Ad are of size (Nd + 1) × (Nd + 1) and blocks tBd of size (Nd + 1) ×Nd, denoting by Nd

the number of mesh cells in direction d.

The StrawHat method aims at determining “directional” fluxes Φf
d fulfilling relation

tBdΦf
d = Af Jf

d . (12)

This system is still overdetermined, but possesses in practice a unique solution. Indeed, the form of tBd

implies that its last row is the sum of all others. Likewise, the last coefficient of right-hand side Af Jf
d is

equal to the sum of all others due to the boundary conditions of SPN problem (8)–(9). Ignoring the last
equation of this system thus does not modify its solution while making it trivially invertible. Once again,
further work is needed to study the validity of the method for other boundary conditions.

In the StrawHat method, the fine flux is defined as the arithmetic average of directional fluxes:

Φf
strawhat =

1

D

D∑
d=1

Φf
d .
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Since Jc
d was originally developed on a basis of cell-wise linear functions in direction d and staircase-shaped

in other directions on the coarse mesh, each directional flux Φf
d will also have the same shape. Thanks to

this directional averaging, the result exhibits the characteristic shape shown on figure 2d, which reminded
us of a straw hat, hence the name‡.

5. METHODS COMPARISON ON AN ANALYTICAL BENCHMARK

We present in this section a comparison of the fine flux integration above on a numerical 2-D benchmark
with homogeneous materials and sinusoidal source term (this problem corresponds to Poisson’s equation):

∀(x, y) ∈ [0, 1]2, D(x, y) = 1, sϕ(x, y) = sin(π x) sin(π y).

All computations presented here were produced using a GNU/Octave§ script, which solves the SP1, RT0
equations. A 10× 10 cells mesh was used as the coarse meshMc, while fine integrals were computed on a
20× 20 cells fine meshMf . Results are presented on figure 2. Fine flux integrals produced by the methods
described above are presented in figures 2c, 2d and 2e. A fine SP1 calculation (fig. 2b) is used as reference
to evaluate errors on these fine integrals, denoted by eϕX = IfX − I

f
SP1

for method X . A 1-D cross-section
of the error field is plotted on figure 2f, and relative L∞ and L2 norms of these errors are presented on the
following table:

DI StrawHat Poisson

‖eϕ‖rel,∞ 8.2% 4.3% 0.69%
‖eϕ‖rel,2 11% 5.6% 0.68%

Although this benchmark problem is purely numerical, a few interesting conclusions can already be drawn
from these results. First, the Direct Integration method seems less accurate than the StrawHat method,
which is itself less accurate than the Poisson method. Overall the Poisson method reduces errors on fine flux
integrals by one order of magnitude, both in L2 and L∞ norms.

Another interesting fact to notice is the difference between coarse and fine SPN calculations (figs. 2a and 2b).
Coarse computation results are not spatially converged, which leads to inexact neutron balances. Indeed, the
flux integral over the entire domain varies by as much as 0.1% between the fine and coarse SPN calculations
on our benchmark. Fine flux integration methods based on the coarse calculation have no means to correct
this error in neutron balance; their accuracy will thus be limited ultimately by this incorrect balance in the
coarse calculation.

This allows us to better understand the shape of fine integral errors. Since fine flux integrals produced by the
Direct Integration and StrawHat methods are much less smooth than the exact solution, errors are dominated
by strong oscillations corresponding to interpolation errors. However, the Poisson method generates much
smoother results, which in this case almost eliminates interpolation errors. Errors on the fine flux integrals
produced by the Poisson method are thus dominated by balance errors coming from the coarse calculation,
which are much smoother.
‡The straw hat shape is more easily recognized when using a piecewise linear representation, as opposed to the piecewise

constant plot on figure 2d.
§www.gnu.org/software/octave/
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(a) Coarse SP1 RT0 calculation
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(b) Fine SP1, RT0 calculation, used as refer-
ence
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(c) Fine flux integrals with the Direct Integra-
tion method
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(d) Fine flux integrals with the StrawHat
method
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(e) Fine flux integrals with the Poisson
method
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Figure 2: Methods comparison on a numerical benchmark: Poisson’s equation with sinusoidal source term
Errors presented on figure are obtained on a 1-D cross-section of the domain for x = 0.5.

6. SPATIAL CONVERGENCE ANALYSIS

In this section we evaluate the efficiency of the two novel integration methods Poisson and Strawhat com-
pared to the original Direct scheme for two different realistic 3-D PWR core configurations. The efficiency
of fine flux integration (FFI) methods can be best assessed using a spatial convergence analysis of the SPN

solver. Indeed, a coarse SPN calculation followed by an optimal FFI method should ideally produce results
of as good accuracy as a finer SPN calculation using a less elaborate FFI method. It is therefore interesting to
measure the impact of FFI methods on measured convergence speeds of the SPN solver.

All results presented below have been obtained using the same experimental set-up. All SPN solvers are fed
with a set of 2-group cross-sections which have been homogenized at the assembly level, on a 17× 17× 41
physical mesh. Fine flux integrals are computed pin-by-pin, i.e. on a fine meshMf containing 17×17 cells
per assembly in radial directions. The fine mesh thus contains a total of 289× 289× 41 cells.
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(a) UOX loading pattern
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(b) UOX/MOX loading pattern
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RT002-POI
RT112
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RT222
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RT222-STR
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Figure 3: Spatial convergence of the SPN and FFI methods on 3-D computations.

Reference results are obtained through an SP1 RT2 calculation on a reference meshMref containing 32×32
cells per assembly in radial directions (it is thus finer thanMf ). Errors produced by calculations on coarser
meshes are evaluated by comparison to these reference results, and based on fine power production rates,
which is one of the most important physical quantities at the local scale:

ep∞ =
‖P f − P f,ref‖∞
‖P ref‖∞

, with P f
i =

∑
g

κ Σf (g) Ifi (g), (13)

where P f is the fine power on meshMf , computed using multigroup power production cross-sections κΣf

and fine flux integrals Ifi .

All computations are run with RT2 elements for the axial discretization (along direction z). However, three
different RTk orders will be compared for the discretization along radial directions (x and y). Solver config-
urations with different RTk orders per direction will be denoted by RTklm (where k, l and m are respectively
the discretization order along x, y and z axes). On another hand, each of these RTk configurations can
be associated to any of the three FFI methods presented above. This gives a total of nine different solver
configurations, which are all compared against the reference computation.

6.1. Solvers Accuracy as a Function of the Discretization

Figure 3 shows the relative error on fine production rates ep∞ as a function of the computational mesh, for
the nine solver configurations. Three colored envelopes are used to group the computations corresponding
to the same RTk element. Within each colored area, three curves correspond each to a FFI method: Direct
integration, StrawHat or Poisson (respectively abridged DI, STR and POI in the legend)

Figure 3a shows the results on the first PWR core configuration, which corresponds to a realistic UOX loading
pattern. For all DIABOLO coarse computation meshes, the accuracy increases with the RTk order. This is
an expected result since the DOFs number increases with the RTk orders. For this UOX loading pattern case,
both Poisson and Strawhat integration methods improve the flux integrals accuracy compared to the original
Direct scheme. The Poisson results are particularly impressive since this method often improves the pin-by-
pin production rates accuracy by as much as one order of magnitude with respect to the original method.
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(a) UOX core: 1-D cross section of fine flux integrals
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(b) UOX/MOX core: 1-D cross section of fine flux integrals

-150

-100

-50

 0

 50

 100

 150

 5
1

 6
8E

rr
o
r 

o
n
 fi

n
e
 i
n
te

g
ra

ls
 e

φ
 (

a
rb

. 
u
n
it

s)

Fine cell index

DI
STR
POI

(c) UOX core: 1-D cross section of errors on If
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(d) UOX/MOX core: 1-D cross section of errors on If

Figure 4: 1-D cross sections of Fine Flux Integrals If in the UOX and UOX/MOX cores.
The two bottom graphs show errors on fine flux integrals, zoomed around an UOX/MOX interface.

These very satisfactory results match those of section 5, where Poisson integration method was shown to be
very efficient for smooth enough flux distribution.

The second core configuration, presented on figure 3b, corresponds to a UOX/MOX loading pattern. Con-
sidering the original Direct scheme curves, one can see that the accuracy also increases with the RTk order
for every considered coarse computational meshes. However, unlike the UOX case, the Poisson method
fails to improve the Direct integrals accuracy for this UOX/MOX loading pattern. This behavior modifica-
tion is explained by figure 4, which shows the flux evolution along a line crossing middle of the PWR core
(Z = NZ/2, Y = NY /2), obtained with RT222 calculations on a computational mesh containing 2 × 2
cells per assembly. The flux evolution exhibits strong discontinuities at the assembly interfaces that lead
the Poisson method to produce sharp oscillations that spoil the fine flux integrals accuracy. In such cases,
the Strawhat method usually outperforms both Poisson and Direct schemes. A maximal flux discontinuity
threshold could probably be used for an a priori selection of the best suited integration method.

6.2. Solvers Accuracy as a Function of Computing Time

In order to prescribe guidelines for the solvers use in industrial settings, it is useful to consider the solvers
accuracy as a function of computing time instead of the discretization: if a user is willing to wait for a given
amount of time, which solver will produce the most accurate answer within this time frame?
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Figure 5: Accuracy of the SPN solver and FFI methods as a function of the computing time.

When trying to optimize the accuracy / cost ratio of an iterative solver, a crucial point is the choice of a
stopping criterion for the iterative system: too large a stopping criterion will produce an inaccurate solution
very fast, whereas too small a stopping criterion will uselessly iterate for a long time without improving
the quality of the solution in the same proportions. In the following study, computing times were measured
using an optimal stopping criterion εopt, defined as follows:

εopt,∞ = max
{
ε such that ∀ ε′ ≤ ε, |e

p
∞(ε′)− ep∞(0+)|
|ep∞(0+)|

< M

}
,

where ep∞(ε) denotes the error produced by a calculation using ε as stopping criterion, measured in L∞

norm. ep∞(0+) denotes the minimal error which would be obtained with an arbitrarily small stopping cri-
terion, and M is an arbitrary threshold which has been set to 10% in our study. Defined in this way, the
optimal stopping criterion is the largest possible value which ensures that the loss of precision with respect
to the best possible precision is smaller than M .

Figure 5 presents the relative error on fine power production rates ep∞ as a function of computing times,
following the same conventions as figure 3. Results corresponding to the UOX loading pattern (figure 5a)
are very interesting: for a given CPU time, RT2 results are always better than RT1 ones which which always
outperform the RT0 computations. In this case, RT2 is always the best choice except if a strong CPU time
constraint excludes this discretization scheme for the coarsest (1×1×1) mesh refinement. In other words, the
accuracy increases faster than the CPU time with growing RTk orders. Moreover, for any given RTk order, we
observe the same FFI methods hierarchy as in the spatial convergence study: the Poisson method outperforms
StrawHat, which in turn presents a better accuracy / cost ratio than the Direct integration method.

Figure 5b however exhibits a very different behaviour on the UOX/MOX core configuration. As seen in the
previous paragraph (figure 3b), increasing the RTk order in this case does not improve the solution accuracy
as much as for the UOX loading pattern. It might then happen that for a given computing time, RT1 results are
more accurate than the RT2 calculation using the same FFI method. The same phenomenon can be observed
between FFI methods for the same RTk order: depending on the required accuracy and acceptable CPU time,
the best FFI method changes. There is no clear prescription in this case, but it seems that two fundamental
results remain valid: RT1 calculations are always more accurate than RT0 ones for a given CPU time, and the
StrawHat method always outperforms the Direct integration in terms of accuracy / cost ratio.

International Conference on Mathematics and Computational Methods Applied to Nuclear Science & Engineering (M&C 2013),
Sun Valley, Idaho, USA, May 5-9, 2013.

11/ 12
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7. CONCLUSION

DIABOLO is a Cartesian SPN solver based on mixed dual RTk finite elements. It is used to compute the
neutron flux inside nuclear cores for keff eigenvalue problems. In order to complete complex simulations
involving a large number of successive eigenvalue calculations within acceptable CPU times, DIABOLO uses
computational meshes that contain a restricted number of cells (e.g. 4 × 4 cells per assembly). Solutions
obtained on these relatively coarse computational meshes are then spatially interpolated to obtain physical
quantities such as neutron production rates on finer meshes (e.g. pin-by-pin power production). This paper
has described two novel methods, named Strawhat and Poisson, that allow the neutron flux to be integrated
over the fine mesh cells. Unlike the original method used in COCAGNE, these new methods compute accurate
fine flux integrals through the interpolation of the current DOFs of the DIABOLO’s mixed dual RTk finite
elements. Assessed on two realistic 3-D PWR core configurations, these methods have been shown to bring
about significant improvements over the original integration scheme. For the first PWR core configuration
which corresponds to an UOX loading pattern, the Poisson method improves the pin-by-pin production rates
accuracy by as much as one order of magnitude. For the second PWR core configuration, which corresponds
to an UOX/MOX loading pattern with strong flux discontinuities at the assembly interfaces, the Strawhat
method always outperforms Poisson in terms of accuracy / cost ratio and often reduces the maximal error
on the pin-by-pin production rates by a factor two with respect to the original scheme.

In order to improve the usability of Poisson and Strawhat, an automatic selection of the best suited inte-
gration method depending on the core characteristics is an important issue to be addressed in the future.
Additionally, we plan to extend the scope of the two novel methods to other kinds of boundary conditions
(e.g. symmetry). Finally, the experimental assessment of the Poisson method should be extended to non-
uniform computation grids in order to improve its results for strongly discontinuous flux distributions.
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