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Abstract

A technique has been developed, allowing the reduction of the storage size requirements for the tracking in
the method of characteristics on periodic lattices. This technique takes advantage of repetitions and symmetries
in the geometry to compute and store only few minimal tracking data, which can later be fetched and recombined
on-the-fly during the sweep to generate all the tracking information needed. This does not affect the results in any
way, and has negligible impact on the sweeping efficiency.

The implementation of this method has shown that the storage space savings can be as high as 80% on a cluster
of 9 assemblies, while incurring no noticeable slow down of the computation.

1. Introduction

In the past years, the Method of Characteristics
(MOC) has become a popular tool for the numeri-
cal solution of the neutron transport equation (Hal-
sall, 1980; Hong and Cho, 1998; Sanchez et al., 1988;
Smith and Rhodes, 2000). The MOC accurately ac-
counts for transport within the regions by means of
an analytical integration of the neutron flux along a
set of trajectories.

In most practical implementations of the MOC,
the trajectories are defined over the whole geomet-
ric domain, and the data relative to their intersections
with the regions are usually computed and stored be-
forehand, during the “tracking” phase of the compu-
tation. Although most core designs involve periodic
arrays of identical cells (e.g. fuel cells in an assembly,
or assemblies in the core), very few implementations
of the MOC take advantage of repetitions in the ge-
ometry to speed-up the tracking process and decrease

the amount of data storage needed for each neutron
trajectory (Kosaka and Saji, 2000). Moreover, to the
authors’ knowledge, these implementations have al-
ways been limited to simple square lattices for core
calculations.

In this work, we show that the neutron trajectories
on a lattice of identical cells can be inferred from a
well-chosen set of trajectories on only one cell of the
lattice. Furthermore we show that this can be done for
any reasonably regular cell shape, and in particular for
all usual core designs involving square, rectangular
or hexagonal lattices. Implementing such a method
could lead to a dramatic decrease of the amount of
data storage needed for the neutron trajectories.

First, we briefly describe the method of character-
istics to emphasize tracking-related issues. We then
study the implications of the lattice symmetries on the
tracking, which will allow us to state the conditions
that a local tracking on a cell must verify to generate
a full global tracking. In the fourth section, we pro-
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pose a practical method to build such a local tracking
for the usual lattice geometries. We further discuss
implementation issues by studying the more general
and useful cases in which the geometry may also in-
clude non-periodic parts (e.g. a reflector surrounding
the assemblies). We then present some numerical ex-
amples. We end with a brief conclusion.

2. The Method of Characteristics

The method of characteristics provides a solution
for the multigroup, SN -discretized formulation of the
transport equation in a geometric domain D:{

(Ω.∇+ Σ)ψ = q, ∀(r,Ω) ∈ D × SN ,

ψ = β ψ + ψ0, ∀(r,Ω) ∈ ∂D × S−N ,
(1)

where ψ(r,Ω) represents the angular flux at posi-
tion r in direction Ω, Σ(r) represents the total cross-
section and q(r,Ω) is the emission density. β is an
albedo operator on the domain boundary and ψ0 rep-
resents an angular flux entering through the boundary
(S−N is the subset of entering angles from the angular
quadrature formula). For the sake of simplicity, we
omitted the multigroup indices.

In the MOC, the spatial discretization is achieved
by defining an unstructured mesh over the domain
and introducing approximated representations for the
fluxes within the regions and on the region bound-
aries. The angular flux, cross-sections and neutron
sources are supposed to be constant within each re-
gion: 

Σ(r) = Σi,

ψ(r) = ψi,

q(r) = qi,

∀r ∈ region i. (2)

Under these assumptions, integrating equation (1)
on a straight trajectory t of direction Ω crossing re-
gion i yields the following transmission and balance
equations:

ψ+
i (t) = e−Σi Ri(t) ψ−i (t)

+
1− e−ΣiRi(t)

Σi
qi(Ω),

(3)

ψi(t) =
ψ−i (t)− ψ+

i (t)
ΣiRi(t)

+
qi(Ω)

Σi
, (4)

with the notations of figure 1: ψ±i (t) are the angular
fluxes entering (−) and leaving (+) region i along the

trajectory t, ψi(t) is the average angular flux in re-
gion i along t, and Ri(t) is the intersection length of
the trajectory within the region.

Then, starting with a given initial boundary con-
dition and repeatedly applying equations (3) and (4)
on a line intersecting the geometric domain, we can
compute the average angular fluxes along each line
segment intersecting a homogeneous region.
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Fig. 1. Transmission of the angular flux along a character-
istic line across a region.

The first step in a MOC calculation is thus to de-
fine a set of characteristic lines over the geometric
domain. In the case of open domains with vacuum
boundary conditions, one usually chooses a constant-
step mesh of lines in directions given by an arbitrarily
chosen quadrature formula. However in the case of
closed domains with reflexion or translation boundary
conditions, much care must be devoted to the choice
of the angular quadrature formula and the character-
istic lines, in order to ensure that the whole domain is
covered by characteristic lines, while allowing exact
treatment of the boundary conditions. This problem
has been widely addressed in the literature (Sanchez
et al., 2002).

For each characteristic line, the series of inter-
cepted regions and the corresponding intersection
lengths are then computed and stored. When the ge-
ometric domain is composed of a lattice of identi-
cal cells, one could expect the neutron trajectories to
show some periodicity, of which we could take advan-
tage to reduce the amount of data storage required for
the tracking. Put the other way round, this problem
reduces to the following question: a set of trajectories
on a cell being given, under which conditions is it pos-
sible to reconstruct a set of trajectories on a periodic
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lattices composed of similar cells?

3. Local tracking symmetries

In this section, we consider a lattice composed
of identical cells. Let C0 be the base cell of the lat-
tice; each other cell in the lattice is built applying a
translation to C0, possibly composed with an isome-
try under which the shape of C0 is invariant (for ex-
ample, a reflexion or rotation in the case of a square-
shaped cell). Let us call GT the group of translations
used to build the lattice, Gint the group of isome-
tries corresponding to the internal symmetries of the
shape of C0, and G the group generated by their union:
G = 〈GT ∪ Gint〉.

Considering a trajectory T over the lattice, we
can see it as a series of straight segments intersect-
ing the lattice cells. Since each cell of the lattice can
be mapped to any other through an isometry, we may
define an equivalence relation between trajectory seg-
ments:

T ∩ C ≡ T ′ ∩ C′ if and only if
∃m ∈ G; C = mC′ and T = mT ′,

(5)

where T and T ′ are two trajectories and C and C′ two
cells intercepted by these trajectories.

In the following, we will try to describe a global
trajectory using only equivalent pieces from a “local
tracking” on C0. A local tracking will be said to be
“complete” if it can generate a full “global tracking”,
i.e. a set of global trajectories on the lattice.

Moreover, since the objective is a decrease in
tracking storage, the local tracking needs to con-
tain only a finite number of segments. We there-
fore choose an angular quadrature formula generating
cyclic trajectories.

3.1. Translation invariance

For the sake of simplicity, let us first consider an
infinite lattice L∞, only built with translations. If
T is a trajectory on this lattice, let us study the re-
quired equivalent local tracking segments required to
describe it:

∀t ∈ GT ,

{
t C0 ∈ L∞,
T ∩ (t C0) ≡

(
t−1 T

)
∩ C0.

A complete local tracking must therefore contain
the set of intersection between the base cell C0 and the

orbit of T under the action of GT :

GTT = {t T ; t ∈ GT } .

Moreover, since the direction Ω of T itself is de-
fined by a translation t ∈ GT (cf. the cyclic condition
in Sanchez et al. (2002)), then we can show that this
orbit may also be obtained under the action of a group
generated by only one translation:

∃t0 ∈ G0;

GTT =
{
ti0 T ; i ∈ Z

}
.

GTT is thus a set of parallel lines, with a constant step
∆Ω = t0 ·Ω⊥ between them.

3.2. Internal symmetries invariance

Now, let us consider the more general and useful
case of a lattice L with boundary conditions and/or
rotated or mirrored cells. Let us study a global trajec-
tory T on this lattice:

∀(t,m) ∈ GT × Gint,


t ◦m C0 ∈ L,

T ∩ (t ◦m C0)

≡
(
m−1 ◦ t−1 T

)
∩ C0.

In this case, not only must the local tracking be
invariant under the action of GT , but also Gint.

As a conclusion, a complete local tracking must
be the intersection of C0 with a set of lines stable un-
der the action of the group generated by t0 and under
the action of Gint. This last constraint additionally
imposes the stability of the angular quadrature for-
mula under the action of Gint.

4. Method Implementation

Such a complete local tracking is not easy to build
because of the numerous internal symmetries to en-
sure (e.g. six rotations and six reflexions for a hexag-
onal cell). One simple method could consist of first
tracking a segment, and then recursively build its or-
bit under the action of G. The main drawback of this
technique is the lack of control on the obtained local
tracking (and therefore on the generated global track-
ing). In particular, we do not know the final number
of segments, nor the minimal distance between two
consecutive parallel segments. This can be seen for
example on figure 2 where the local tracking does not
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cover the base cell uniformly∗, which could lead to
accuracy issues in the computation.
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Fig. 2. Lattice of rectangular cells with specular reflexion
on the boundaries.

4.1. Construction of the local tracking

In this section we propose a technique allowing
construction of a complete local tracking with a con-
stant step between consecutive segments in the same
direction. We need the additional hypothesis that all
Gint isometries have a common fixed point O. While
theoretically a big loss of generality, this is in prac-
tice always the case for commonly used geometries
(square, rectangles or hexagons).

Let us consider an axis originating from O in di-
rection Ω0, and define an abscissa x on it. For each
direction Ω 6= Ω0 in the quadrature formula, we track
all the segments originating from the points of abscis-
sae

x±Ω,i = ±
(
i+

1
2

)
∆Ω

Ω⊥ ·Ω0︸ ︷︷ ︸
∆x0

, i ∈ N.

As shown in figure 3, the resulting local tracking does
not depend on the direction Ω0 chosen for the axis.

∆Ω
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bx∆

∆xa

bx∆
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2

Fig. 3. Thales’ theorem shows that the local tracking is in-
dependent from the direction Ωa or Ωb which is chosen as
an axis.

By construction, such a local tracking is clearly
invariant under the action of GT . Moreover, it can
easily be proved that, since the angular quadrature
formula is stable under the action of Gint, the local
tracking also is.

4.2. Example of local trackings

If we consider the very simple example of a 2D
rectangular cell of size (a × b) as an example, the
above method reduces to the following steps:

1. The internal symmetries of the base cell are the
reflexions with respect to the x and y axes. The
center of the cell is a fixed point, which al-
lows us to use the technique. The quadrature
formula must be stable under these transforma-
tions, which means it must be defined over a
quadrant and replicated by symmetry.

2. The cyclic angles are associated to the transla-
tions defining the lattice (Sanchez et al., 2002):

tn,m = n ex +mey,

tanφn,m =
mb

na
,

∆n,m =
a

|m|
| sinφn,m|.

3. We choose to use the x axis as base for the
tracking:

∆xn,m =
∆n,m

| sinφn,m|
=

a

|m|
,

xi,±
n,m = ±

(
i+

1
2

)
a

|m|
, i ∈ N.

∗We can see that the distance between two consecutive parallel segments is not homogeneous. Some parts of the geometric
domain thus remain less extensively explored than others, which can cause a loss of accuracy.
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Thus we need to compute the local tracking
starting from the points of abscissae xi,±

n,m in the
directions given by φn,m and π − φn,m.

In conclusion, the tracking procedure is very sim-
ilar to that of the base cell with cyclic boundary con-
ditions. The only additional step is to ensure that the
tracking step divides ∆x.

Using this method, one obtains local trackings
similar to those shown on figure 4. We can clearly
see the additional complexity arising from the need
to account for the internal symmetries of the square
(rotations by k π

2 ) and the hexagon (rotations by k π
3 ).

Fig. 4. Local trackings on the usual lattice cell shapes.

rectangle: (n, m) = (1, 3)

square: (n, m) = (2, 3)

hexagon: (n, m) = (1, 3)

4.3. Interfaces between periodic lattice and non-
periodic parts

In general the geometric domain is not only com-
posed a periodic lattice but also contains a general,
non-periodic part (for example a reflector surround-
ing the assemblies, fig. 5). In this case, we have to
deal with interfaces between periodic parts of the tra-
jectories (which can be described using a local track-
ing) and non-periodic ones (which must be entirely
stored).

A first solution could be to store the non-periodic
parts of the trajectories along with the local tracking,
and then fetch the tracking segments needed on-the-

fly, during the sweep. Such a solution requires the
ability to determine, for any given position and di-
rection in the geometry, whether we enter a periodic
or non-periodic part, and in either case, which seg-
ment of the tracking must be followed to resume the
sweep. Although this can be computed easily enough,
it would entail some unacceptable slow down.

A more flexible technique, although slightly more
space-consuming, consists of pre-computing the se-
ries of tracking segments that one needs to sweep.
This information can be stored in a macro-tracking
and be used very efficiently during the sweep. This is
the solution that we used: a macro-tracking stores the
non-periodic parts of the tracking, interleaved with
pointers to the local tracking segments. This only re-
quires few modifications to the traditional sweeping
algorithm, while preserving most of its efficiency.

Fig. 5. Example of a non entirely periodic geometry. Some
parts of the trajectories can be fetched in a local periodic
tracking; some others must be stored extensively.

4.4. Numerical tests and results

We have implemented this tracking technique in
the TDT solver and present here some of the results
obtained for different geometry configurations.

4.4.1 Cluster of cells
As a very first test-case, we studied a cluster of

nine simple cells, such as presented on figure 6. Ta-
ble 1 shows a comparison of the tracking size and the
tracking/sweeping times for the traditional “flat” tech-
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nique and the periodic tracking technique presented
in this paper. In both cases, the results in terms of
angular flux and multiplication factor were exactly
identical, since the tracking data actually used dur-
ing the sweep are strictly the same. For such a simple
cell, the results are not much in favour of the periodic
tracking: the gain in tracking storage is diminished by
the importance of the macro-tracking size. Moreover,
the additional complexity in the sweeping algorithm
makes it just not worth using the periodic tracking on
such small scales.

Fig. 6. Cluster of 3 × 3 cells: lattice geometry (left) and
detail of the cell geometry (right).

Table 1
Comparison between both techniques on the cell cluster
presented on figure 6.

Flat Periodic rel. diff.
Tracking size (b) 6 192 5 160 -16.67%
Tracking time (s) 0.18 0.26 +44.44%
Sweeping time (s) 0.89 1.15 +29.21%

4.4.2 Cluster of assemblies
The gains become significant for more complex

geometries such as the cluster of nine assemblies pre-
sented on figure 7, which contains 8 000 regions. The
results collected in table 2 show that the tracking size
decreases by as much as 81%. The loss with re-
spect to the maximal theoretical gain (which would
be 8/9 = 88.9%) is due to the additional storage
needed for the macro-tracking.

Besides, there aren’t any loss with respect to
sweeping efficiency (there is even some gain in the
sweeping time, probably due to the decreased need of
memory swapping).

4.4.3 Non entirely periodical domain
On a geometric domain which is only partly com-

posed of a lattice, the non-periodic part (such as
for example the reflector) must be stored entirely,

which limits the maximal theoretical gain in terms of
tracking storage size. Still, we obtain advantageous
enough storage gains, such as 77% on the geometry
presented on figure 8 (in a more realistic computation,
the discretization of the reflector would probably limit
the gains to approximately 70%).

Fig. 7. Cluster of 3 × 3 assemblies: lattice geometry (left)
and detail of the assembly geometry (right).

Table 2
Comparison between both techniques on the assembly clus-
ter presented on figure 7.

Flat Periodic rel. diff.
Tracking size (b) 3 557 760 671 388 -81.13%
Tracking time (s) 14.43 5.32 -63.13%
Sweeping time (s) 369.42 356.58 -3.48%

Fig. 8. Lattice of assemblies surrounded by a reflector:
global geometry (left) and detail of the assembly (right).

Table 3
Comparison between both techniques on the geometry pre-
sented on figure 8.

Flat Periodic rel. diff.
Tracking size (b) 3 255 288 758 832 -76.69%
Tracking time (s) 16.78 6.33 -62.28%
Sweeping time (s) 773.78 762.79 -1.42%
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5. Conclusion

We have developed and implemented a tracking
technique for the method of characteristics that takes
advantage of repetitions and symmetries in the geom-
etry to reduce the tracking storage size. Such a tech-
nique is useful for geometries which are composed, at
least partly, of a lattice of identical cells.

Our numerical examples show that this method
can lead to dramatic decreases in the tracking stor-
age requirements (up to 80% for example on a cluster
of nine assemblies). It is however unadapted to cases
where the periodic cell is too simple (such as lattices
of fuel rod cells). In any case, the obtained results are
strictly identical to those which would come from a
traditional full-tracking computation.

In our current implementation, only square and
rectangular cell shapes are supported†. The global
shape of the geometric domain is also currently lim-
ited to rectangles. We plan to remove these limita-
tions to allow computation of hexagonal lattices or of
eighth of core geometries.
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